Calculus Examples

Solve the Differential Equation (dy)/(dt)=(y^2+1)/(t+1)
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Simplify the expression.
Tap for more steps...
Step 2.2.1.1
Reorder and .
Step 2.2.1.2
Rewrite as .
Step 2.2.2
The integral of with respect to is .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Let . Then . Rewrite using and .
Tap for more steps...
Step 2.3.1.1
Let . Find .
Tap for more steps...
Step 2.3.1.1.1
Differentiate .
Step 2.3.1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.1.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.1.1.5
Add and .
Step 2.3.1.2
Rewrite the problem using and .
Step 2.3.2
The integral of with respect to is .
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Take the inverse arctangent of both sides of the equation to extract from inside the arctangent.