Calculus Examples

Solve the Differential Equation (1+x^2)dy-x(yd)x=0
Step 1
Add to both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.1
Factor out of .
Step 3.1.2
Cancel the common factor.
Step 3.1.3
Rewrite the expression.
Step 3.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1
Factor out of .
Step 3.2.2
Factor out of .
Step 3.2.3
Cancel the common factor.
Step 3.2.4
Rewrite the expression.
Step 3.3
Combine and .
Step 4
Integrate both sides.
Tap for more steps...
Step 4.1
Set up an integral on each side.
Step 4.2
The integral of with respect to is .
Step 4.3
Integrate the right side.
Tap for more steps...
Step 4.3.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 4.3.1.1
Let . Find .
Tap for more steps...
Step 4.3.1.1.1
Differentiate .
Step 4.3.1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 4.3.1.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.1.1.4
Differentiate using the Power Rule which states that is where .
Step 4.3.1.1.5
Add and .
Step 4.3.1.2
Rewrite the problem using and .
Step 4.3.2
Simplify.
Tap for more steps...
Step 4.3.2.1
Multiply by .
Step 4.3.2.2
Move to the left of .
Step 4.3.3
Since is constant with respect to , move out of the integral.
Step 4.3.4
The integral of with respect to is .
Step 4.3.5
Simplify.
Step 4.3.6
Replace all occurrences of with .
Step 4.4
Group the constant of integration on the right side as .
Step 5
Solve for .
Tap for more steps...
Step 5.1
Simplify the right side.
Tap for more steps...
Step 5.1.1
Combine and .
Step 5.2
Move all the terms containing a logarithm to the left side of the equation.
Step 5.3
To write as a fraction with a common denominator, multiply by .
Step 5.4
Simplify terms.
Tap for more steps...
Step 5.4.1
Combine and .
Step 5.4.2
Combine the numerators over the common denominator.
Step 5.5
Move to the left of .
Step 5.6
Simplify the left side.
Tap for more steps...
Step 5.6.1
Simplify .
Tap for more steps...
Step 5.6.1.1
Simplify the numerator.
Tap for more steps...
Step 5.6.1.1.1
Simplify by moving inside the logarithm.
Step 5.6.1.1.2
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.6.1.1.3
Use the quotient property of logarithms, .
Step 5.6.1.2
Rewrite as .
Step 5.6.1.3
Simplify by moving inside the logarithm.
Step 5.6.1.4
Apply the product rule to .
Step 5.6.1.5
Simplify the numerator.
Tap for more steps...
Step 5.6.1.5.1
Multiply the exponents in .
Tap for more steps...
Step 5.6.1.5.1.1
Apply the power rule and multiply exponents, .
Step 5.6.1.5.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.6.1.5.1.2.1
Cancel the common factor.
Step 5.6.1.5.1.2.2
Rewrite the expression.
Step 5.6.1.5.2
Simplify.
Step 5.7
To solve for , rewrite the equation using properties of logarithms.
Step 5.8
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 5.9
Solve for .
Tap for more steps...
Step 5.9.1
Rewrite the equation as .
Step 5.9.2
Multiply both sides by .
Step 5.9.3
Simplify the left side.
Tap for more steps...
Step 5.9.3.1
Cancel the common factor of .
Tap for more steps...
Step 5.9.3.1.1
Cancel the common factor.
Step 5.9.3.1.2
Rewrite the expression.
Step 6
Simplify the constant of integration.