Calculus Examples

Solve the Differential Equation (dy)/(dt)=0.6y^(1/2)
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2
Combine and .
Step 1.2.3
Cancel the common factor of .
Tap for more steps...
Step 1.2.3.1
Cancel the common factor.
Step 1.2.3.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Apply basic rules of exponents.
Tap for more steps...
Step 2.2.1.1
Move out of the denominator by raising it to the power.
Step 2.2.1.2
Multiply the exponents in .
Tap for more steps...
Step 2.2.1.2.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2.2
Combine and .
Step 2.2.1.2.3
Move the negative in front of the fraction.
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Apply the constant rule.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Divide each term in by and simplify.
Tap for more steps...
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Tap for more steps...
Step 3.1.2.1
Cancel the common factor.
Step 3.1.2.2
Divide by .
Step 3.1.3
Simplify the right side.
Tap for more steps...
Step 3.1.3.1
Simplify each term.
Tap for more steps...
Step 3.1.3.1.1
Factor out of .
Step 3.1.3.1.2
Factor out of .
Step 3.1.3.1.3
Separate fractions.
Step 3.1.3.1.4
Divide by .
Step 3.1.3.1.5
Divide by .
Step 3.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.3
Simplify the exponent.
Tap for more steps...
Step 3.3.1
Simplify the left side.
Tap for more steps...
Step 3.3.1.1
Simplify .
Tap for more steps...
Step 3.3.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 3.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.3.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.3.1.1.1.2.1
Cancel the common factor.
Step 3.3.1.1.1.2.2
Rewrite the expression.
Step 3.3.1.1.2
Simplify.
Step 3.3.2
Simplify the right side.
Tap for more steps...
Step 3.3.2.1
Simplify .
Tap for more steps...
Step 3.3.2.1.1
Rewrite as .
Step 3.3.2.1.2
Expand using the FOIL Method.
Tap for more steps...
Step 3.3.2.1.2.1
Apply the distributive property.
Step 3.3.2.1.2.2
Apply the distributive property.
Step 3.3.2.1.2.3
Apply the distributive property.
Step 3.3.2.1.3
Simplify and combine like terms.
Tap for more steps...
Step 3.3.2.1.3.1
Simplify each term.
Tap for more steps...
Step 3.3.2.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.3.2.1.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 3.3.2.1.3.1.2.1
Move .
Step 3.3.2.1.3.1.2.2
Multiply by .
Step 3.3.2.1.3.1.3
Multiply by .
Step 3.3.2.1.3.1.4
Multiply .
Tap for more steps...
Step 3.3.2.1.3.1.4.1
Combine and .
Step 3.3.2.1.3.1.4.2
Combine and .
Step 3.3.2.1.3.1.5
Move to the left of .
Step 3.3.2.1.3.1.6
Factor out of .
Step 3.3.2.1.3.1.7
Factor out of .
Step 3.3.2.1.3.1.8
Separate fractions.
Step 3.3.2.1.3.1.9
Divide by .
Step 3.3.2.1.3.1.10
Divide by .
Step 3.3.2.1.3.1.11
Rewrite using the commutative property of multiplication.
Step 3.3.2.1.3.1.12
Combine and .
Step 3.3.2.1.3.1.13
Factor out of .
Step 3.3.2.1.3.1.14
Factor out of .
Step 3.3.2.1.3.1.15
Separate fractions.
Step 3.3.2.1.3.1.16
Divide by .
Step 3.3.2.1.3.1.17
Divide by .
Step 3.3.2.1.3.1.18
Multiply .
Tap for more steps...
Step 3.3.2.1.3.1.18.1
Multiply by .
Step 3.3.2.1.3.1.18.2
Raise to the power of .
Step 3.3.2.1.3.1.18.3
Raise to the power of .
Step 3.3.2.1.3.1.18.4
Use the power rule to combine exponents.
Step 3.3.2.1.3.1.18.5
Add and .
Step 3.3.2.1.3.1.18.6
Multiply by .
Step 3.3.2.1.3.2
Add and .
Tap for more steps...
Step 3.3.2.1.3.2.1
Move .
Step 3.3.2.1.3.2.2
Add and .
Step 3.4
Simplify .
Tap for more steps...
Step 3.4.1
Move .
Step 3.4.2
Reorder and .
Step 4
Simplify the constant of integration.