Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Step 1.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2
Combine and .
Step 1.2.3
Cancel the common factor of .
Step 1.2.3.1
Cancel the common factor.
Step 1.2.3.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Apply basic rules of exponents.
Step 2.2.1.1
Move out of the denominator by raising it to the power.
Step 2.2.1.2
Multiply the exponents in .
Step 2.2.1.2.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2.2
Combine and .
Step 2.2.1.2.3
Move the negative in front of the fraction.
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Apply the constant rule.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Cancel the common factor.
Step 3.1.2.2
Divide by .
Step 3.1.3
Simplify the right side.
Step 3.1.3.1
Simplify each term.
Step 3.1.3.1.1
Factor out of .
Step 3.1.3.1.2
Factor out of .
Step 3.1.3.1.3
Separate fractions.
Step 3.1.3.1.4
Divide by .
Step 3.1.3.1.5
Divide by .
Step 3.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.3
Simplify the exponent.
Step 3.3.1
Simplify the left side.
Step 3.3.1.1
Simplify .
Step 3.3.1.1.1
Multiply the exponents in .
Step 3.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 3.3.1.1.1.2
Cancel the common factor of .
Step 3.3.1.1.1.2.1
Cancel the common factor.
Step 3.3.1.1.1.2.2
Rewrite the expression.
Step 3.3.1.1.2
Simplify.
Step 3.3.2
Simplify the right side.
Step 3.3.2.1
Simplify .
Step 3.3.2.1.1
Rewrite as .
Step 3.3.2.1.2
Expand using the FOIL Method.
Step 3.3.2.1.2.1
Apply the distributive property.
Step 3.3.2.1.2.2
Apply the distributive property.
Step 3.3.2.1.2.3
Apply the distributive property.
Step 3.3.2.1.3
Simplify and combine like terms.
Step 3.3.2.1.3.1
Simplify each term.
Step 3.3.2.1.3.1.1
Rewrite using the commutative property of multiplication.
Step 3.3.2.1.3.1.2
Multiply by by adding the exponents.
Step 3.3.2.1.3.1.2.1
Move .
Step 3.3.2.1.3.1.2.2
Multiply by .
Step 3.3.2.1.3.1.3
Multiply by .
Step 3.3.2.1.3.1.4
Multiply .
Step 3.3.2.1.3.1.4.1
Combine and .
Step 3.3.2.1.3.1.4.2
Combine and .
Step 3.3.2.1.3.1.5
Move to the left of .
Step 3.3.2.1.3.1.6
Factor out of .
Step 3.3.2.1.3.1.7
Factor out of .
Step 3.3.2.1.3.1.8
Separate fractions.
Step 3.3.2.1.3.1.9
Divide by .
Step 3.3.2.1.3.1.10
Divide by .
Step 3.3.2.1.3.1.11
Rewrite using the commutative property of multiplication.
Step 3.3.2.1.3.1.12
Combine and .
Step 3.3.2.1.3.1.13
Factor out of .
Step 3.3.2.1.3.1.14
Factor out of .
Step 3.3.2.1.3.1.15
Separate fractions.
Step 3.3.2.1.3.1.16
Divide by .
Step 3.3.2.1.3.1.17
Divide by .
Step 3.3.2.1.3.1.18
Multiply .
Step 3.3.2.1.3.1.18.1
Multiply by .
Step 3.3.2.1.3.1.18.2
Raise to the power of .
Step 3.3.2.1.3.1.18.3
Raise to the power of .
Step 3.3.2.1.3.1.18.4
Use the power rule to combine exponents.
Step 3.3.2.1.3.1.18.5
Add and .
Step 3.3.2.1.3.1.18.6
Multiply by .
Step 3.3.2.1.3.2
Add and .
Step 3.3.2.1.3.2.1
Move .
Step 3.3.2.1.3.2.2
Add and .
Step 3.4
Simplify .
Step 3.4.1
Move .
Step 3.4.2
Reorder and .
Step 4
Simplify the constant of integration.