Calculus Examples

Solve the Differential Equation (2xy^2-y)dx+xdy=0
Step 1
Find where .
Tap for more steps...
Step 1.1
Differentiate with respect to .
Step 1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.2
Differentiate using the Power Rule which states that is where .
Step 1.3.3
Multiply by .
Step 1.4
Evaluate .
Tap for more steps...
Step 1.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 1.4.2
Differentiate using the Power Rule which states that is where .
Step 1.4.3
Multiply by .
Step 2
Find where .
Tap for more steps...
Step 2.1
Differentiate with respect to .
Step 2.2
Differentiate using the Power Rule which states that is where .
Step 3
Check that .
Tap for more steps...
Step 3.1
Substitute for and for .
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
is not an identity.
is not an identity.
Step 4
Find the integration factor .
Tap for more steps...
Step 4.1
Substitute for .
Step 4.2
Substitute for .
Step 4.3
Substitute for .
Tap for more steps...
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify the numerator.
Tap for more steps...
Step 4.3.2.1
Apply the distributive property.
Step 4.3.2.2
Multiply by .
Step 4.3.2.3
Multiply by .
Step 4.3.2.4
Add and .
Step 4.3.2.5
Factor out of .
Tap for more steps...
Step 4.3.2.5.1
Factor out of .
Step 4.3.2.5.2
Factor out of .
Step 4.3.2.5.3
Factor out of .
Step 4.3.3
Factor out of .
Tap for more steps...
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Factor out of .
Step 4.3.3.3
Factor out of .
Step 4.3.4
Cancel the common factor of and .
Tap for more steps...
Step 4.3.4.1
Factor out of .
Step 4.3.4.2
Rewrite as .
Step 4.3.4.3
Factor out of .
Step 4.3.4.4
Rewrite as .
Step 4.3.4.5
Cancel the common factor.
Step 4.3.4.6
Rewrite the expression.
Step 4.3.5
Multiply by .
Step 4.3.6
Substitute for .
Step 4.4
Find the integration factor .
Step 5
Evaluate the integral .
Tap for more steps...
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Since is constant with respect to , move out of the integral.
Step 5.3
Multiply by .
Step 5.4
The integral of with respect to is .
Step 5.5
Simplify.
Step 5.6
Simplify each term.
Tap for more steps...
Step 5.6.1
Simplify by moving inside the logarithm.
Step 5.6.2
Exponentiation and log are inverse functions.
Step 5.6.3
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.6.4
Rewrite the expression using the negative exponent rule .
Step 6
Multiply both sides of by the integration factor .
Tap for more steps...
Step 6.1
Multiply by .
Step 6.2
Multiply by .
Step 6.3
Factor out of .
Tap for more steps...
Step 6.3.1
Factor out of .
Step 6.3.2
Factor out of .
Step 6.3.3
Factor out of .
Step 6.4
Cancel the common factors.
Tap for more steps...
Step 6.4.1
Factor out of .
Step 6.4.2
Cancel the common factor.
Step 6.4.3
Rewrite the expression.
Step 6.5
Multiply by .
Step 6.6
Combine and .
Step 7
Set equal to the integral of .
Step 8
Integrate to find .
Tap for more steps...
Step 8.1
Since is constant with respect to , move out of the integral.
Step 8.2
Move out of the denominator by raising it to the power.
Step 8.3
Multiply the exponents in .
Tap for more steps...
Step 8.3.1
Apply the power rule and multiply exponents, .
Step 8.3.2
Multiply by .
Step 8.4
By the Power Rule, the integral of with respect to is .
Step 8.5
Simplify the answer.
Tap for more steps...
Step 8.5.1
Rewrite as .
Step 8.5.2
Combine and .
Step 9
Since the integral of will contain an integration constant, we can replace with .
Step 10
Set .
Step 11
Find .
Tap for more steps...
Step 11.1
Differentiate with respect to .
Step 11.2
By the Sum Rule, the derivative of with respect to is .
Step 11.3
Evaluate .
Tap for more steps...
Step 11.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 11.3.2
Differentiate using the Power Rule which states that is where .
Step 11.3.3
Multiply by .
Step 11.4
Differentiate using the function rule which states that the derivative of is .
Step 11.5
Reorder terms.
Step 12
Solve for .
Tap for more steps...
Step 12.1
Solve for .
Tap for more steps...
Step 12.1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 12.1.1.1
Subtract from both sides of the equation.
Step 12.1.1.2
Combine the numerators over the common denominator.
Step 12.1.1.3
Simplify each term.
Tap for more steps...
Step 12.1.1.3.1
Apply the distributive property.
Step 12.1.1.3.2
Multiply by .
Step 12.1.1.3.3
Multiply by .
Step 12.1.1.4
Combine the opposite terms in .
Tap for more steps...
Step 12.1.1.4.1
Add and .
Step 12.1.1.4.2
Add and .
Step 12.1.1.5
Cancel the common factor of .
Tap for more steps...
Step 12.1.1.5.1
Cancel the common factor.
Step 12.1.1.5.2
Divide by .
Step 12.1.2
Add to both sides of the equation.
Step 13
Find the antiderivative of to find .
Tap for more steps...
Step 13.1
Integrate both sides of .
Step 13.2
Evaluate .
Step 13.3
Since is constant with respect to , move out of the integral.
Step 13.4
By the Power Rule, the integral of with respect to is .
Step 13.5
Simplify the answer.
Tap for more steps...
Step 13.5.1
Rewrite as .
Step 13.5.2
Simplify.
Tap for more steps...
Step 13.5.2.1
Combine and .
Step 13.5.2.2
Cancel the common factor of .
Tap for more steps...
Step 13.5.2.2.1
Cancel the common factor.
Step 13.5.2.2.2
Rewrite the expression.
Step 13.5.2.3
Multiply by .
Step 14
Substitute for in .