Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3
Differentiate using the Power Rule which states that is where .
Step 1.4
Multiply by .
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
Differentiate.
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Subtract from .
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
is not an identity.
is not an identity.
Step 4
Step 4.1
Substitute for .
Step 4.2
Substitute for .
Step 4.3
Substitute for .
Step 4.3.1
Substitute for .
Step 4.3.2
Subtract from .
Step 4.3.3
Cancel the common factor of .
Step 4.3.3.1
Cancel the common factor.
Step 4.3.3.2
Rewrite the expression.
Step 4.3.4
Substitute for .
Step 4.4
Find the integration factor .
Step 5
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Since is constant with respect to , move out of the integral.
Step 5.3
Multiply by .
Step 5.4
The integral of with respect to is .
Step 5.5
Simplify.
Step 5.6
Simplify each term.
Step 5.6.1
Simplify by moving inside the logarithm.
Step 5.6.2
Exponentiation and log are inverse functions.
Step 5.6.3
Rewrite the expression using the negative exponent rule .
Step 6
Step 6.1
Multiply by .
Step 6.2
Cancel the common factor of .
Step 6.2.1
Factor out of .
Step 6.2.2
Factor out of .
Step 6.2.3
Cancel the common factor.
Step 6.2.4
Rewrite the expression.
Step 6.3
Combine and .
Step 6.4
Multiply by .
Step 6.5
Multiply by .
Step 6.6
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 7
Set equal to the integral of .
Step 8
Step 8.1
Since is constant with respect to , move out of the integral.
Step 8.2
By the Power Rule, the integral of with respect to is .
Step 8.3
Simplify the answer.
Step 8.3.1
Rewrite as .
Step 8.3.2
Simplify.
Step 8.3.2.1
Multiply by .
Step 8.3.2.2
Move to the left of .
Step 8.3.2.3
Multiply by .
Step 8.3.2.4
Combine and .
Step 9
Since the integral of will contain an integration constant, we can replace with .
Step 10
Set .
Step 11
Step 11.1
Differentiate with respect to .
Step 11.2
By the Sum Rule, the derivative of with respect to is .
Step 11.3
Evaluate .
Step 11.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 11.3.2
Rewrite as .
Step 11.3.3
Differentiate using the chain rule, which states that is where and .
Step 11.3.3.1
To apply the Chain Rule, set as .
Step 11.3.3.2
Differentiate using the Power Rule which states that is where .
Step 11.3.3.3
Replace all occurrences of with .
Step 11.3.4
Differentiate using the Power Rule which states that is where .
Step 11.3.5
Multiply the exponents in .
Step 11.3.5.1
Apply the power rule and multiply exponents, .
Step 11.3.5.2
Multiply by .
Step 11.3.6
Multiply by .
Step 11.3.7
Raise to the power of .
Step 11.3.8
Use the power rule to combine exponents.
Step 11.3.9
Subtract from .
Step 11.3.10
Combine and .
Step 11.3.11
Combine and .
Step 11.3.12
Move to the denominator using the negative exponent rule .
Step 11.3.13
Cancel the common factor of and .
Step 11.3.13.1
Factor out of .
Step 11.3.13.2
Cancel the common factors.
Step 11.3.13.2.1
Factor out of .
Step 11.3.13.2.2
Cancel the common factor.
Step 11.3.13.2.3
Rewrite the expression.
Step 11.3.14
Move the negative in front of the fraction.
Step 11.4
Differentiate using the function rule which states that the derivative of is .
Step 11.5
Reorder terms.
Step 12
Step 12.1
Solve for .
Step 12.1.1
Move all terms containing variables to the left side of the equation.
Step 12.1.1.1
Subtract from both sides of the equation.
Step 12.1.1.2
Combine the numerators over the common denominator.
Step 12.1.1.3
Simplify each term.
Step 12.1.1.3.1
Apply the distributive property.
Step 12.1.1.3.2
Expand using the FOIL Method.
Step 12.1.1.3.2.1
Apply the distributive property.
Step 12.1.1.3.2.2
Apply the distributive property.
Step 12.1.1.3.2.3
Apply the distributive property.
Step 12.1.1.3.3
Simplify and combine like terms.
Step 12.1.1.3.3.1
Simplify each term.
Step 12.1.1.3.3.1.1
Multiply by by adding the exponents.
Step 12.1.1.3.3.1.1.1
Move .
Step 12.1.1.3.3.1.1.2
Multiply by .
Step 12.1.1.3.3.1.2
Rewrite using the commutative property of multiplication.
Step 12.1.1.3.3.1.3
Multiply by .
Step 12.1.1.3.3.1.4
Multiply by .
Step 12.1.1.3.3.1.5
Rewrite using the commutative property of multiplication.
Step 12.1.1.3.3.1.6
Multiply by by adding the exponents.
Step 12.1.1.3.3.1.6.1
Move .
Step 12.1.1.3.3.1.6.2
Multiply by .
Step 12.1.1.3.3.1.7
Multiply by .
Step 12.1.1.3.3.1.8
Multiply by .
Step 12.1.1.3.3.2
Subtract from .
Step 12.1.1.3.3.2.1
Reorder and .
Step 12.1.1.3.3.2.2
Subtract from .
Step 12.1.1.3.3.3
Add and .
Step 12.1.1.4
Combine the opposite terms in .
Step 12.1.1.4.1
Add and .
Step 12.1.1.4.2
Add and .
Step 12.1.1.5
Simplify each term.
Step 12.1.1.5.1
Cancel the common factor of and .
Step 12.1.1.5.1.1
Factor out of .
Step 12.1.1.5.1.2
Cancel the common factors.
Step 12.1.1.5.1.2.1
Factor out of .
Step 12.1.1.5.1.2.2
Cancel the common factor.
Step 12.1.1.5.1.2.3
Rewrite the expression.
Step 12.1.1.5.2
Move the negative in front of the fraction.
Step 12.1.2
Add to both sides of the equation.
Step 13
Step 13.1
Integrate both sides of .
Step 13.2
Evaluate .
Step 13.3
The integral of with respect to is .
Step 14
Substitute for in .