Enter a problem...
Calculus Examples
,
Step 1
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Since the derivative of is , the integral of is .
Step 2.3.5
Simplify.
Step 2.3.5.1
Combine and .
Step 2.3.5.2
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Use the initial condition to find the value of by substituting for and for in .
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Simplify the left side.
Step 4.2.1
Simplify .
Step 4.2.1.1
Simplify each term.
Step 4.2.1.1.1
Apply the product rule to .
Step 4.2.1.1.2
Raise to the power of .
Step 4.2.1.1.3
Cancel the common factor of .
Step 4.2.1.1.3.1
Cancel the common factor.
Step 4.2.1.1.3.2
Rewrite the expression.
Step 4.2.1.1.4
The exact value of is .
Step 4.2.1.1.5
Multiply by .
Step 4.2.1.2
Add and .
Step 4.3
Subtract from both sides of the equation.
Step 5
Step 5.1
Substitute for .