Enter a problem...
Calculus Examples
,
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
By the Power Rule, the integral of with respect to is .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Combine and .
Step 3.2.2.1.2
Apply the distributive property.
Step 3.2.2.1.3
Combine and .
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
Factor out of .
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Factor out of .
Step 3.4.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.3
Simplify terms.
Step 3.4.3.1
Combine and .
Step 3.4.3.2
Combine the numerators over the common denominator.
Step 3.4.4
Move to the left of .
Step 3.4.5
Combine and .
Step 3.4.6
Rewrite as .
Step 3.4.7
Multiply by .
Step 3.4.8
Combine and simplify the denominator.
Step 3.4.8.1
Multiply by .
Step 3.4.8.2
Raise to the power of .
Step 3.4.8.3
Use the power rule to combine exponents.
Step 3.4.8.4
Add and .
Step 3.4.8.5
Rewrite as .
Step 3.4.8.5.1
Use to rewrite as .
Step 3.4.8.5.2
Apply the power rule and multiply exponents, .
Step 3.4.8.5.3
Combine and .
Step 3.4.8.5.4
Cancel the common factor of .
Step 3.4.8.5.4.1
Cancel the common factor.
Step 3.4.8.5.4.2
Rewrite the expression.
Step 3.4.8.5.5
Evaluate the exponent.
Step 3.4.9
Simplify the numerator.
Step 3.4.9.1
Rewrite as .
Step 3.4.9.2
Raise to the power of .
Step 3.4.9.3
Rewrite as .
Step 3.4.9.3.1
Factor out of .
Step 3.4.9.3.2
Rewrite as .
Step 3.4.9.4
Pull terms out from under the radical.
Step 3.4.9.5
Combine exponents.
Step 3.4.9.5.1
Combine using the product rule for radicals.
Step 3.4.9.5.2
Multiply by .
Step 3.4.10
Cancel the common factors.
Step 3.4.10.1
Factor out of .
Step 3.4.10.2
Cancel the common factor.
Step 3.4.10.3
Rewrite the expression.
Step 4
Simplify the constant of integration.
Step 5
Use the initial condition to find the value of by substituting for and for in .
Step 6
Step 6.1
Rewrite the equation as .
Step 6.2
Multiply both sides by .
Step 6.3
Simplify.
Step 6.3.1
Simplify the left side.
Step 6.3.1.1
Simplify .
Step 6.3.1.1.1
Raise to the power of .
Step 6.3.1.1.2
Cancel the common factor of .
Step 6.3.1.1.2.1
Cancel the common factor.
Step 6.3.1.1.2.2
Rewrite the expression.
Step 6.3.2
Simplify the right side.
Step 6.3.2.1
Move to the left of .
Step 6.4
Solve for .
Step 6.4.1
To remove the radical on the left side of the equation, cube both sides of the equation.
Step 6.4.2
Simplify each side of the equation.
Step 6.4.2.1
Use to rewrite as .
Step 6.4.2.2
Simplify the left side.
Step 6.4.2.2.1
Simplify .
Step 6.4.2.2.1.1
Multiply the exponents in .
Step 6.4.2.2.1.1.1
Apply the power rule and multiply exponents, .
Step 6.4.2.2.1.1.2
Cancel the common factor of .
Step 6.4.2.2.1.1.2.1
Cancel the common factor.
Step 6.4.2.2.1.1.2.2
Rewrite the expression.
Step 6.4.2.2.1.2
Apply the distributive property.
Step 6.4.2.2.1.3
Multiply.
Step 6.4.2.2.1.3.1
Multiply by .
Step 6.4.2.2.1.3.2
Simplify.
Step 6.4.2.3
Simplify the right side.
Step 6.4.2.3.1
Simplify .
Step 6.4.2.3.1.1
Simplify the expression.
Step 6.4.2.3.1.1.1
Apply the product rule to .
Step 6.4.2.3.1.1.2
Raise to the power of .
Step 6.4.2.3.1.2
Rewrite as .
Step 6.4.2.3.1.2.1
Use to rewrite as .
Step 6.4.2.3.1.2.2
Apply the power rule and multiply exponents, .
Step 6.4.2.3.1.2.3
Combine and .
Step 6.4.2.3.1.2.4
Cancel the common factor of .
Step 6.4.2.3.1.2.4.1
Cancel the common factor.
Step 6.4.2.3.1.2.4.2
Rewrite the expression.
Step 6.4.2.3.1.2.5
Evaluate the exponent.
Step 6.4.2.3.1.3
Multiply by .
Step 6.4.3
Solve for .
Step 6.4.3.1
Move all terms not containing to the right side of the equation.
Step 6.4.3.1.1
Subtract from both sides of the equation.
Step 6.4.3.1.2
Subtract from .
Step 6.4.3.2
Divide each term in by and simplify.
Step 6.4.3.2.1
Divide each term in by .
Step 6.4.3.2.2
Simplify the left side.
Step 6.4.3.2.2.1
Cancel the common factor of .
Step 6.4.3.2.2.1.1
Cancel the common factor.
Step 6.4.3.2.2.1.2
Divide by .
Step 6.4.3.2.3
Simplify the right side.
Step 6.4.3.2.3.1
Divide by .
Step 7
Step 7.1
Substitute for .