Enter a problem...
Calculus Examples
Step 1
Step 1.1
Set up the integration.
Step 1.2
Integrate .
Step 1.2.1
Since is constant with respect to , move out of the integral.
Step 1.2.2
The integral of with respect to is .
Step 1.2.3
Simplify.
Step 1.3
Remove the constant of integration.
Step 1.4
Use the logarithmic power rule.
Step 1.5
Exponentiation and log are inverse functions.
Step 2
Step 2.1
Multiply each term by .
Step 2.2
Simplify each term.
Step 2.2.1
Combine and .
Step 2.2.2
Cancel the common factor of .
Step 2.2.2.1
Factor out of .
Step 2.2.2.2
Cancel the common factor.
Step 2.2.2.3
Rewrite the expression.
Step 2.2.3
Rewrite using the commutative property of multiplication.
Step 2.3
Cancel the common factor of .
Step 2.3.1
Cancel the common factor.
Step 2.3.2
Rewrite the expression.
Step 3
Rewrite the left side as a result of differentiating a product.
Step 4
Set up an integral on each side.
Step 5
Integrate the left side.
Step 6
Step 6.1
Let . Then , so . Rewrite using and .
Step 6.1.1
Let . Find .
Step 6.1.1.1
Differentiate .
Step 6.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 6.1.1.3
Differentiate using the Power Rule which states that is where .
Step 6.1.1.4
Multiply by .
Step 6.1.2
Rewrite the problem using and .
Step 6.2
Combine and .
Step 6.3
Since is constant with respect to , move out of the integral.
Step 6.4
The integral of with respect to is .
Step 6.5
Simplify.
Step 6.5.1
Simplify.
Step 6.5.2
Combine and .
Step 6.6
Replace all occurrences of with .
Step 6.7
Reorder terms.
Step 7
Step 7.1
Divide each term in by .
Step 7.2
Simplify the left side.
Step 7.2.1
Cancel the common factor of .
Step 7.2.1.1
Cancel the common factor.
Step 7.2.1.2
Divide by .
Step 7.3
Simplify the right side.
Step 7.3.1
Simplify each term.
Step 7.3.1.1
Combine and .
Step 7.3.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 7.3.1.3
Multiply by .
Step 7.3.1.4
Move to the left of .