Calculus Examples

Solve the Differential Equation (dw)/(dt)=10e^((-t)/25)-w/25
Step 1
Rewrite the differential equation as .
Tap for more steps...
Step 1.1
Add to both sides of the equation.
Step 1.2
Rewrite the equation with isolated coefficients.
Step 2
The integrating factor is defined by the formula , where .
Tap for more steps...
Step 2.1
Set up the integration.
Step 2.2
Apply the constant rule.
Step 2.3
Remove the constant of integration.
Step 2.4
Combine and .
Step 3
Multiply each term by the integrating factor .
Tap for more steps...
Step 3.1
Multiply each term by .
Step 3.2
Simplify each term.
Tap for more steps...
Step 3.2.1
Rewrite using the commutative property of multiplication.
Step 3.2.2
Combine and .
Step 3.2.3
Combine and .
Step 3.3
Rewrite using the commutative property of multiplication.
Step 3.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.1
Move .
Step 3.4.2
Use the power rule to combine exponents.
Step 3.4.3
Simplify each term.
Tap for more steps...
Step 3.4.3.1
Move the negative in front of the fraction.
Step 3.4.3.2
Combine and .
Step 3.4.4
Add and .
Step 3.5
Simplify .
Step 3.6
Reorder factors in .
Step 4
Rewrite the left side as a result of differentiating a product.
Step 5
Set up an integral on each side.
Step 6
Integrate the left side.
Step 7
Apply the constant rule.
Step 8
Divide each term in by and simplify.
Tap for more steps...
Step 8.1
Divide each term in by .
Step 8.2
Simplify the left side.
Tap for more steps...
Step 8.2.1
Cancel the common factor of .
Tap for more steps...
Step 8.2.1.1
Cancel the common factor.
Step 8.2.1.2
Divide by .