Calculus Examples

Solve the Differential Equation (dy)/(dx)=y/x+( square root of x^2-y^2)/x
dydx=yx+x2-y2xdydx=yx+x2y2x
Step 1
Rewrite the differential equation as a function of yx.
Tap for more steps...
Step 1.1
Assume x2=x.
dydx=yx+x2-y2x2
Step 1.2
Combine x2-y2 and x2 into a single radical.
dydx=yx+x2-y2x2
Step 1.3
Split x2-y2x2 and simplify.
Tap for more steps...
Step 1.3.1
Split the fraction x2-y2x2 into two fractions.
dydx=yx+x2x2+-y2x2
Step 1.3.2
Simplify each term.
Tap for more steps...
Step 1.3.2.1
Cancel the common factor of x2.
Tap for more steps...
Step 1.3.2.1.1
Cancel the common factor.
dydx=yx+x2x2+-y2x2
Step 1.3.2.1.2
Rewrite the expression.
dydx=yx+1+-y2x2
dydx=yx+1+-y2x2
Step 1.3.2.2
Move the negative in front of the fraction.
dydx=yx+1-y2x2
dydx=yx+1-y2x2
dydx=yx+1-y2x2
Step 1.4
Rewrite y2x2 as (yx)2.
dydx=yx+1-(yx)2
dydx=yx+1-(yx)2
Step 2
Let V=yx. Substitute V for yx.
dydx=V+1-V2
Step 3
Solve V=yx for y.
y=Vx
Step 4
Use the product rule to find the derivative of y=Vx with respect to x.
dydx=xdVdx+V
Step 5
Substitute xdVdx+V for dydx.
xdVdx+V=V+1-V2
Step 6
Solve the substituted differential equation.
Tap for more steps...
Step 6.1
Separate the variables.
Tap for more steps...
Step 6.1.1
Solve for dVdx.
Tap for more steps...
Step 6.1.1.1
Simplify each term.
Tap for more steps...
Step 6.1.1.1.1
Rewrite 1 as 12.
xdVdx+V=V+12-V2
Step 6.1.1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=V.
xdVdx+V=V+(1+V)(1-V)
xdVdx+V=V+(1+V)(1-V)
Step 6.1.1.2
Move all terms not containing dVdx to the right side of the equation.
Tap for more steps...
Step 6.1.1.2.1
Subtract V from both sides of the equation.
xdVdx=V+(1+V)(1-V)-V
Step 6.1.1.2.2
Combine the opposite terms in V+(1+V)(1-V)-V.
Tap for more steps...
Step 6.1.1.2.2.1
Subtract V from V.
xdVdx=0+(1+V)(1-V)
Step 6.1.1.2.2.2
Add 0 and (1+V)(1-V).
xdVdx=(1+V)(1-V)
xdVdx=(1+V)(1-V)
xdVdx=(1+V)(1-V)
Step 6.1.1.3
Divide each term in xdVdx=(1+V)(1-V) by x and simplify.
Tap for more steps...
Step 6.1.1.3.1
Divide each term in xdVdx=(1+V)(1-V) by x.
xdVdxx=(1+V)(1-V)x
Step 6.1.1.3.2
Simplify the left side.
Tap for more steps...
Step 6.1.1.3.2.1
Cancel the common factor of x.
Tap for more steps...
Step 6.1.1.3.2.1.1
Cancel the common factor.
xdVdxx=(1+V)(1-V)x
Step 6.1.1.3.2.1.2
Divide dVdx by 1.
dVdx=(1+V)(1-V)x
dVdx=(1+V)(1-V)x
dVdx=(1+V)(1-V)x
dVdx=(1+V)(1-V)x
dVdx=(1+V)(1-V)x
Step 6.1.2
Multiply both sides by 1(1+V)(1-V).
1(1+V)(1-V)dVdx=1(1+V)(1-V)(1+V)(1-V)x
Step 6.1.3
Cancel the common factor of (1+V)(1-V).
Tap for more steps...
Step 6.1.3.1
Cancel the common factor.
1(1+V)(1-V)dVdx=1(1+V)(1-V)(1+V)(1-V)x
Step 6.1.3.2
Rewrite the expression.
1(1+V)(1-V)dVdx=1x
1(1+V)(1-V)dVdx=1x
Step 6.1.4
Rewrite the equation.
1(1+V)(1-V)dV=1xdx
1(1+V)(1-V)dV=1xdx
Step 6.2
Integrate both sides.
Tap for more steps...
Step 6.2.1
Set up an integral on each side.
1(1+V)(1-V)dV=1xdx
Step 6.2.2
Integrate the left side.
Tap for more steps...
Step 6.2.2.1
Complete the square.
Tap for more steps...
Step 6.2.2.1.1
Simplify the expression.
Tap for more steps...
Step 6.2.2.1.1.1
Expand (1+V)(1-V) using the FOIL Method.
Tap for more steps...
Step 6.2.2.1.1.1.1
Apply the distributive property.
1(1-V)+V(1-V)
Step 6.2.2.1.1.1.2
Apply the distributive property.
11+1(-V)+V(1-V)
Step 6.2.2.1.1.1.3
Apply the distributive property.
11+1(-V)+V1+V(-V)
11+1(-V)+V1+V(-V)
Step 6.2.2.1.1.2
Simplify and combine like terms.
Tap for more steps...
Step 6.2.2.1.1.2.1
Simplify each term.
Tap for more steps...
Step 6.2.2.1.1.2.1.1
Multiply 1 by 1.
1+1(-V)+V1+V(-V)
Step 6.2.2.1.1.2.1.2
Multiply -V by 1.
1-V+V1+V(-V)
Step 6.2.2.1.1.2.1.3
Multiply V by 1.
1-V+V+V(-V)
Step 6.2.2.1.1.2.1.4
Rewrite using the commutative property of multiplication.
1-V+V-VV
Step 6.2.2.1.1.2.1.5
Multiply V by V by adding the exponents.
Tap for more steps...
Step 6.2.2.1.1.2.1.5.1
Move V.
1-V+V-(VV)
Step 6.2.2.1.1.2.1.5.2
Multiply V by V.
1-V+V-V2
1-V+V-V2
1-V+V-V2
Step 6.2.2.1.1.2.2
Add -V and V.
1+0-V2
Step 6.2.2.1.1.2.3
Add 1 and 0.
1-V2
1-V2
Step 6.2.2.1.1.3
Reorder 1 and -V2.
-V2+1
-V2+1
Step 6.2.2.1.2
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=0
c=1
Step 6.2.2.1.3
Consider the vertex form of a parabola.
a(x+d)2+e
Step 6.2.2.1.4
Find the value of d using the formula d=b2a.
Tap for more steps...
Step 6.2.2.1.4.1
Substitute the values of a and b into the formula d=b2a.
d=02-1
Step 6.2.2.1.4.2
Simplify the right side.
Tap for more steps...
Step 6.2.2.1.4.2.1
Cancel the common factor of 0 and 2.
Tap for more steps...
Step 6.2.2.1.4.2.1.1
Factor 2 out of 0.
d=2(0)2-1
Step 6.2.2.1.4.2.1.2
Move the negative one from the denominator of 0-1.
d=-10
d=-10
Step 6.2.2.1.4.2.2
Rewrite -10 as -0.
d=-0
Step 6.2.2.1.4.2.3
Multiply -1 by 0.
d=0
d=0
d=0
Step 6.2.2.1.5
Find the value of e using the formula e=c-b24a.
Tap for more steps...
Step 6.2.2.1.5.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=1-024-1
Step 6.2.2.1.5.2
Simplify the right side.
Tap for more steps...
Step 6.2.2.1.5.2.1
Simplify each term.
Tap for more steps...
Step 6.2.2.1.5.2.1.1
Raising 0 to any positive power yields 0.
e=1-04-1
Step 6.2.2.1.5.2.1.2
Multiply 4 by -1.
e=1-0-4
Step 6.2.2.1.5.2.1.3
Divide 0 by -4.
e=1-0
Step 6.2.2.1.5.2.1.4
Multiply -1 by 0.
e=1+0
e=1+0
Step 6.2.2.1.5.2.2
Add 1 and 0.
e=1
e=1
e=1
Step 6.2.2.1.6
Substitute the values of a, d, and e into the vertex form -(V+0)2+1.
1-(V+0)2+1dV=1xdx
1-(V+0)2+1dV=1xdx
Step 6.2.2.2
Let u=V+0. Then du=dV. Rewrite using u and du.
Tap for more steps...
Step 6.2.2.2.1
Let u=V+0. Find dudV.
Tap for more steps...
Step 6.2.2.2.1.1
Differentiate V+0.
ddV[V+0]
Step 6.2.2.2.1.2
By the Sum Rule, the derivative of V+0 with respect to V is ddV[V]+ddV[0].
ddV[V]+ddV[0]
Step 6.2.2.2.1.3
Differentiate using the Power Rule which states that ddV[Vn] is nVn-1 where n=1.
1+ddV[0]
Step 6.2.2.2.1.4
Since 0 is constant with respect to V, the derivative of 0 with respect to V is 0.
1+0
Step 6.2.2.2.1.5
Add 1 and 0.
1
1
Step 6.2.2.2.2
Rewrite the problem using u and du.
1-u2+1du=1xdx
1-u2+1du=1xdx
Step 6.2.2.3
Simplify the expression.
Tap for more steps...
Step 6.2.2.3.1
Rewrite 1 as 12.
1-u2+12du=1xdx
Step 6.2.2.3.2
Reorder -u2 and 12.
112-u2du=1xdx
112-u2du=1xdx
Step 6.2.2.4
The integral of 112-u2 with respect to u is arcsin(u)
arcsin(u)+C1=1xdx
Step 6.2.2.5
Replace all occurrences of u with V+0.
arcsin(V+0)+C1=1xdx
Step 6.2.2.6
Add V and 0.
arcsin(V)+C1=1xdx
arcsin(V)+C1=1xdx
Step 6.2.3
The integral of 1x with respect to x is ln(|x|).
arcsin(V)+C1=ln(|x|)+C2
Step 6.2.4
Group the constant of integration on the right side as C.
arcsin(V)=ln(|x|)+C
arcsin(V)=ln(|x|)+C
Step 6.3
Take the inverse arcsine of both sides of the equation to extract V from inside the arcsine.
V=sin(ln(|x|)+C)
V=sin(ln(|x|)+C)
Step 7
Substitute yx for V.
yx=sin(ln(|x|)+C)
Step 8
Solve yx=sin(ln(|x|)+C) for y.
Tap for more steps...
Step 8.1
Multiply both sides by x.
yxx=sin(ln(|x|)+C)x
Step 8.2
Simplify.
Tap for more steps...
Step 8.2.1
Simplify the left side.
Tap for more steps...
Step 8.2.1.1
Cancel the common factor of x.
Tap for more steps...
Step 8.2.1.1.1
Cancel the common factor.
yxx=sin(ln(|x|)+C)x
Step 8.2.1.1.2
Rewrite the expression.
y=sin(ln(|x|)+C)x
y=sin(ln(|x|)+C)x
y=sin(ln(|x|)+C)x
Step 8.2.2
Simplify the right side.
Tap for more steps...
Step 8.2.2.1
Reorder factors in sin(ln(|x|)+C)x.
y=xsin(ln(|x|)+C)
y=xsin(ln(|x|)+C)
y=xsin(ln(|x|)+C)
y=xsin(ln(|x|)+C)
 [x2  12  π  xdx ]