Enter a problem...
Calculus Examples
dydx=yx+√x2-y2xdydx=yx+√x2−y2x
Step 1
Step 1.1
Assume √x2=x.
dydx=yx+√x2-y2√x2
Step 1.2
Combine √x2-y2 and √x2 into a single radical.
dydx=yx+√x2-y2x2
Step 1.3
Split x2-y2x2 and simplify.
Step 1.3.1
Split the fraction x2-y2x2 into two fractions.
dydx=yx+√x2x2+-y2x2
Step 1.3.2
Simplify each term.
Step 1.3.2.1
Cancel the common factor of x2.
Step 1.3.2.1.1
Cancel the common factor.
dydx=yx+√x2x2+-y2x2
Step 1.3.2.1.2
Rewrite the expression.
dydx=yx+√1+-y2x2
dydx=yx+√1+-y2x2
Step 1.3.2.2
Move the negative in front of the fraction.
dydx=yx+√1-y2x2
dydx=yx+√1-y2x2
dydx=yx+√1-y2x2
Step 1.4
Rewrite y2x2 as (yx)2.
dydx=yx+√1-(yx)2
dydx=yx+√1-(yx)2
Step 2
Let V=yx. Substitute V for yx.
dydx=V+√1-V2
Step 3
Solve V=yx for y.
y=Vx
Step 4
Use the product rule to find the derivative of y=Vx with respect to x.
dydx=xdVdx+V
Step 5
Substitute xdVdx+V for dydx.
xdVdx+V=V+√1-V2
Step 6
Step 6.1
Separate the variables.
Step 6.1.1
Solve for dVdx.
Step 6.1.1.1
Simplify each term.
Step 6.1.1.1.1
Rewrite 1 as 12.
xdVdx+V=V+√12-V2
Step 6.1.1.1.2
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b) where a=1 and b=V.
xdVdx+V=V+√(1+V)(1-V)
xdVdx+V=V+√(1+V)(1-V)
Step 6.1.1.2
Move all terms not containing dVdx to the right side of the equation.
Step 6.1.1.2.1
Subtract V from both sides of the equation.
xdVdx=V+√(1+V)(1-V)-V
Step 6.1.1.2.2
Combine the opposite terms in V+√(1+V)(1-V)-V.
Step 6.1.1.2.2.1
Subtract V from V.
xdVdx=0+√(1+V)(1-V)
Step 6.1.1.2.2.2
Add 0 and √(1+V)(1-V).
xdVdx=√(1+V)(1-V)
xdVdx=√(1+V)(1-V)
xdVdx=√(1+V)(1-V)
Step 6.1.1.3
Divide each term in xdVdx=√(1+V)(1-V) by x and simplify.
Step 6.1.1.3.1
Divide each term in xdVdx=√(1+V)(1-V) by x.
xdVdxx=√(1+V)(1-V)x
Step 6.1.1.3.2
Simplify the left side.
Step 6.1.1.3.2.1
Cancel the common factor of x.
Step 6.1.1.3.2.1.1
Cancel the common factor.
xdVdxx=√(1+V)(1-V)x
Step 6.1.1.3.2.1.2
Divide dVdx by 1.
dVdx=√(1+V)(1-V)x
dVdx=√(1+V)(1-V)x
dVdx=√(1+V)(1-V)x
dVdx=√(1+V)(1-V)x
dVdx=√(1+V)(1-V)x
Step 6.1.2
Multiply both sides by 1√(1+V)(1-V).
1√(1+V)(1-V)dVdx=1√(1+V)(1-V)⋅√(1+V)(1-V)x
Step 6.1.3
Cancel the common factor of √(1+V)(1-V).
Step 6.1.3.1
Cancel the common factor.
1√(1+V)(1-V)dVdx=1√(1+V)(1-V)⋅√(1+V)(1-V)x
Step 6.1.3.2
Rewrite the expression.
1√(1+V)(1-V)dVdx=1x
1√(1+V)(1-V)dVdx=1x
Step 6.1.4
Rewrite the equation.
1√(1+V)(1-V)dV=1xdx
1√(1+V)(1-V)dV=1xdx
Step 6.2
Integrate both sides.
Step 6.2.1
Set up an integral on each side.
∫1√(1+V)(1-V)dV=∫1xdx
Step 6.2.2
Integrate the left side.
Step 6.2.2.1
Complete the square.
Step 6.2.2.1.1
Simplify the expression.
Step 6.2.2.1.1.1
Expand (1+V)(1-V) using the FOIL Method.
Step 6.2.2.1.1.1.1
Apply the distributive property.
1(1-V)+V(1-V)
Step 6.2.2.1.1.1.2
Apply the distributive property.
1⋅1+1(-V)+V(1-V)
Step 6.2.2.1.1.1.3
Apply the distributive property.
1⋅1+1(-V)+V⋅1+V(-V)
1⋅1+1(-V)+V⋅1+V(-V)
Step 6.2.2.1.1.2
Simplify and combine like terms.
Step 6.2.2.1.1.2.1
Simplify each term.
Step 6.2.2.1.1.2.1.1
Multiply 1 by 1.
1+1(-V)+V⋅1+V(-V)
Step 6.2.2.1.1.2.1.2
Multiply -V by 1.
1-V+V⋅1+V(-V)
Step 6.2.2.1.1.2.1.3
Multiply V by 1.
1-V+V+V(-V)
Step 6.2.2.1.1.2.1.4
Rewrite using the commutative property of multiplication.
1-V+V-V⋅V
Step 6.2.2.1.1.2.1.5
Multiply V by V by adding the exponents.
Step 6.2.2.1.1.2.1.5.1
Move V.
1-V+V-(V⋅V)
Step 6.2.2.1.1.2.1.5.2
Multiply V by V.
1-V+V-V2
1-V+V-V2
1-V+V-V2
Step 6.2.2.1.1.2.2
Add -V and V.
1+0-V2
Step 6.2.2.1.1.2.3
Add 1 and 0.
1-V2
1-V2
Step 6.2.2.1.1.3
Reorder 1 and -V2.
-V2+1
-V2+1
Step 6.2.2.1.2
Use the form ax2+bx+c, to find the values of a, b, and c.
a=-1
b=0
c=1
Step 6.2.2.1.3
Consider the vertex form of a parabola.
a(x+d)2+e
Step 6.2.2.1.4
Find the value of d using the formula d=b2a.
Step 6.2.2.1.4.1
Substitute the values of a and b into the formula d=b2a.
d=02⋅-1
Step 6.2.2.1.4.2
Simplify the right side.
Step 6.2.2.1.4.2.1
Cancel the common factor of 0 and 2.
Step 6.2.2.1.4.2.1.1
Factor 2 out of 0.
d=2(0)2⋅-1
Step 6.2.2.1.4.2.1.2
Move the negative one from the denominator of 0-1.
d=-1⋅0
d=-1⋅0
Step 6.2.2.1.4.2.2
Rewrite -1⋅0 as -0.
d=-0
Step 6.2.2.1.4.2.3
Multiply -1 by 0.
d=0
d=0
d=0
Step 6.2.2.1.5
Find the value of e using the formula e=c-b24a.
Step 6.2.2.1.5.1
Substitute the values of c, b and a into the formula e=c-b24a.
e=1-024⋅-1
Step 6.2.2.1.5.2
Simplify the right side.
Step 6.2.2.1.5.2.1
Simplify each term.
Step 6.2.2.1.5.2.1.1
Raising 0 to any positive power yields 0.
e=1-04⋅-1
Step 6.2.2.1.5.2.1.2
Multiply 4 by -1.
e=1-0-4
Step 6.2.2.1.5.2.1.3
Divide 0 by -4.
e=1-0
Step 6.2.2.1.5.2.1.4
Multiply -1 by 0.
e=1+0
e=1+0
Step 6.2.2.1.5.2.2
Add 1 and 0.
e=1
e=1
e=1
Step 6.2.2.1.6
Substitute the values of a, d, and e into the vertex form -(V+0)2+1.
∫1√-(V+0)2+1dV=∫1xdx
∫1√-(V+0)2+1dV=∫1xdx
Step 6.2.2.2
Let u=V+0. Then du=dV. Rewrite using u and du.
Step 6.2.2.2.1
Let u=V+0. Find dudV.
Step 6.2.2.2.1.1
Differentiate V+0.
ddV[V+0]
Step 6.2.2.2.1.2
By the Sum Rule, the derivative of V+0 with respect to V is ddV[V]+ddV[0].
ddV[V]+ddV[0]
Step 6.2.2.2.1.3
Differentiate using the Power Rule which states that ddV[Vn] is nVn-1 where n=1.
1+ddV[0]
Step 6.2.2.2.1.4
Since 0 is constant with respect to V, the derivative of 0 with respect to V is 0.
1+0
Step 6.2.2.2.1.5
Add 1 and 0.
1
1
Step 6.2.2.2.2
Rewrite the problem using u and du.
∫1√-u2+1du=∫1xdx
∫1√-u2+1du=∫1xdx
Step 6.2.2.3
Simplify the expression.
Step 6.2.2.3.1
Rewrite 1 as 12.
∫1√-u2+12du=∫1xdx
Step 6.2.2.3.2
Reorder -u2 and 12.
∫1√12-u2du=∫1xdx
∫1√12-u2du=∫1xdx
Step 6.2.2.4
The integral of 1√12-u2 with respect to u is arcsin(u)
arcsin(u)+C1=∫1xdx
Step 6.2.2.5
Replace all occurrences of u with V+0.
arcsin(V+0)+C1=∫1xdx
Step 6.2.2.6
Add V and 0.
arcsin(V)+C1=∫1xdx
arcsin(V)+C1=∫1xdx
Step 6.2.3
The integral of 1x with respect to x is ln(|x|).
arcsin(V)+C1=ln(|x|)+C2
Step 6.2.4
Group the constant of integration on the right side as C.
arcsin(V)=ln(|x|)+C
arcsin(V)=ln(|x|)+C
Step 6.3
Take the inverse arcsine of both sides of the equation to extract V from inside the arcsine.
V=sin(ln(|x|)+C)
V=sin(ln(|x|)+C)
Step 7
Substitute yx for V.
yx=sin(ln(|x|)+C)
Step 8
Step 8.1
Multiply both sides by x.
yxx=sin(ln(|x|)+C)x
Step 8.2
Simplify.
Step 8.2.1
Simplify the left side.
Step 8.2.1.1
Cancel the common factor of x.
Step 8.2.1.1.1
Cancel the common factor.
yxx=sin(ln(|x|)+C)x
Step 8.2.1.1.2
Rewrite the expression.
y=sin(ln(|x|)+C)x
y=sin(ln(|x|)+C)x
y=sin(ln(|x|)+C)x
Step 8.2.2
Simplify the right side.
Step 8.2.2.1
Reorder factors in sin(ln(|x|)+C)x.
y=xsin(ln(|x|)+C)
y=xsin(ln(|x|)+C)
y=xsin(ln(|x|)+C)
y=xsin(ln(|x|)+C)