Enter a problem...
Calculus Examples
xe-tdxdt=txe−tdxdt=t , x(0)=1x(0)=1
Step 1
Step 1.1
Divide each term in xe-tdxdt=txe−tdxdt=t by xe-txe−t and simplify.
Step 1.1.1
Divide each term in xe-tdxdt=txe−tdxdt=t by xe-txe−t.
xe-tdxdtxe-t=txe-txe−tdxdtxe−t=txe−t
Step 1.1.2
Simplify the left side.
Step 1.1.2.1
Cancel the common factor of xx.
Step 1.1.2.1.1
Cancel the common factor.
xe-tdxdtxe-t=txe-t
Step 1.1.2.1.2
Rewrite the expression.
e-tdxdte-t=txe-t
e-tdxdte-t=txe-t
Step 1.1.2.2
Cancel the common factor of e-t.
Step 1.1.2.2.1
Cancel the common factor.
e-tdxdte-t=txe-t
Step 1.1.2.2.2
Divide dxdt by 1.
dxdt=txe-t
dxdt=txe-t
dxdt=txe-t
dxdt=txe-t
Step 1.2
Regroup factors.
dxdt=te-t⋅1x
Step 1.3
Multiply both sides by x.
xdxdt=x(te-t⋅1x)
Step 1.4
Simplify.
Step 1.4.1
Combine.
xdxdt=xt⋅1e-tx
Step 1.4.2
Cancel the common factor of x.
Step 1.4.2.1
Factor x out of e-tx.
xdxdt=xt⋅1xe-t
Step 1.4.2.2
Cancel the common factor.
xdxdt=xt⋅1xe-t
Step 1.4.2.3
Rewrite the expression.
xdxdt=t⋅1e-t
xdxdt=t⋅1e-t
Step 1.4.3
Multiply t by 1.
xdxdt=te-t
xdxdt=te-t
Step 1.5
Rewrite the equation.
xdx=te-tdt
xdx=te-tdt
Step 2
Step 2.1
Set up an integral on each side.
∫xdx=∫te-tdt
Step 2.2
By the Power Rule, the integral of x with respect to x is 12x2.
12x2+C1=∫te-tdt
Step 2.3
Integrate the right side.
Step 2.3.1
Simplify the expression.
Step 2.3.1.1
Negate the exponent of e-t and move it out of the denominator.
12x2+C1=∫t(e-t)-1dt
Step 2.3.1.2
Multiply the exponents in (e-t)-1.
Step 2.3.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
12x2+C1=∫te-t⋅-1dt
Step 2.3.1.2.2
Multiply -t⋅-1.
Step 2.3.1.2.2.1
Multiply -1 by -1.
12x2+C1=∫te1tdt
Step 2.3.1.2.2.2
Multiply t by 1.
12x2+C1=∫tetdt
12x2+C1=∫tetdt
12x2+C1=∫tetdt
12x2+C1=∫tetdt
Step 2.3.2
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=t and dv=et.
12x2+C1=tet-∫etdt
Step 2.3.3
The integral of et with respect to t is et.
12x2+C1=tet-(et+C2)
Step 2.3.4
Simplify.
12x2+C1=tet-et+C2
Step 2.3.5
Reorder terms.
12x2+C1=ett-et+C2
12x2+C1=ett-et+C2
Step 2.4
Group the constant of integration on the right side as K.
12x2=ett-et+K
12x2=ett-et+K
Step 3
Step 3.1
Multiply both sides of the equation by 2.
2(12x2)=2(ett-et+K)
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify 2(12x2).
Step 3.2.1.1.1
Combine 12 and x2.
2x22=2(ett-et+K)
Step 3.2.1.1.2
Cancel the common factor of 2.
Step 3.2.1.1.2.1
Cancel the common factor.
2x22=2(ett-et+K)
Step 3.2.1.1.2.2
Rewrite the expression.
x2=2(ett-et+K)
x2=2(ett-et+K)
x2=2(ett-et+K)
x2=2(ett-et+K)
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify 2(ett-et+K).
Step 3.2.2.1.1
Apply the distributive property.
x2=2(ett)+2(-et)+2K
Step 3.2.2.1.2
Multiply -1 by 2.
x2=2ett-2et+2K
Step 3.2.2.1.3
Reorder factors in 2ett-2et+2K.
x2=2tet-2et+2K
x2=2tet-2et+2K
x2=2tet-2et+2K
x2=2tet-2et+2K
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±√2tet-2et+2K
Step 3.4
Factor 2 out of 2tet-2et+2K.
Step 3.4.1
Factor 2 out of 2tet.
x=±√2(tet)-2et+2K
Step 3.4.2
Factor 2 out of -2et.
x=±√2(tet)+2(-et)+2K
Step 3.4.3
Factor 2 out of 2K.
x=±√2(tet)+2(-et)+2K
Step 3.4.4
Factor 2 out of 2(tet)+2(-et).
x=±√2(tet-et)+2K
Step 3.4.5
Factor 2 out of 2(tet-et)+2K.
x=±√2(tet-et+K)
x=±√2(tet-et+K)
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
Step 3.5.1
First, use the positive value of the ± to find the first solution.
x=√2(tet-et+K)
Step 3.5.2
Next, use the negative value of the ± to find the second solution.
x=-√2(tet-et+K)
Step 3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
x=√2(tet-et+K)
x=-√2(tet-et+K)
x=√2(tet-et+K)
x=-√2(tet-et+K)
x=√2(tet-et+K)
x=-√2(tet-et+K)
Step 4
Since x is positive in the initial condition (0,1), only consider x=√2(tet-et+K) to find the K. Substitute 0 for t and 1 for x.
1=√2(0e0-e0+K)
Step 5
Step 5.1
Rewrite the equation as √2(0e0-e0+K)=1.
√2(0e0-e0+K)=1
Step 5.2
To remove the radical on the left side of the equation, square both sides of the equation.
√2(0e0-e0+K)2=12
Step 5.3
Simplify each side of the equation.
Step 5.3.1
Use n√ax=axn to rewrite √2(0e0-e0+K) as (2(0e0-e0+K))12.
((2(0e0-e0+K))12)2=12
Step 5.3.2
Simplify the left side.
Step 5.3.2.1
Simplify ((2(0e0-e0+K))12)2.
Step 5.3.2.1.1
Multiply the exponents in ((2(0e0-e0+K))12)2.
Step 5.3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(2(0e0-e0+K))12⋅2=12
Step 5.3.2.1.1.2
Cancel the common factor of 2.
Step 5.3.2.1.1.2.1
Cancel the common factor.
(2(0e0-e0+K))12⋅2=12
Step 5.3.2.1.1.2.2
Rewrite the expression.
(2(0e0-e0+K))1=12
(2(0e0-e0+K))1=12
(2(0e0-e0+K))1=12
Step 5.3.2.1.2
Simplify each term.
Step 5.3.2.1.2.1
Anything raised to 0 is 1.
(2(0⋅1-e0+K))1=12
Step 5.3.2.1.2.2
Multiply 0 by 1.
(2(0-e0+K))1=12
Step 5.3.2.1.2.3
Anything raised to 0 is 1.
(2(0-1⋅1+K))1=12
Step 5.3.2.1.2.4
Multiply -1 by 1.
(2(0-1+K))1=12
(2(0-1+K))1=12
Step 5.3.2.1.3
Simplify by multiplying through.
Step 5.3.2.1.3.1
Subtract 1 from 0.
(2(-1+K))1=12
Step 5.3.2.1.3.2
Apply the distributive property.
(2⋅-1+2K)1=12
Step 5.3.2.1.3.3
Multiply.
Step 5.3.2.1.3.3.1
Multiply 2 by -1.
(-2+2K)1=12
Step 5.3.2.1.3.3.2
Simplify.
-2+2K=12
-2+2K=12
-2+2K=12
-2+2K=12
-2+2K=12
Step 5.3.3
Simplify the right side.
Step 5.3.3.1
One to any power is one.
-2+2K=1
-2+2K=1
-2+2K=1
Step 5.4
Solve for K.
Step 5.4.1
Move all terms not containing K to the right side of the equation.
Step 5.4.1.1
Add 2 to both sides of the equation.
2K=1+2
Step 5.4.1.2
Add 1 and 2.
2K=3
2K=3
Step 5.4.2
Divide each term in 2K=3 by 2 and simplify.
Step 5.4.2.1
Divide each term in 2K=3 by 2.
2K2=32
Step 5.4.2.2
Simplify the left side.
Step 5.4.2.2.1
Cancel the common factor of 2.
Step 5.4.2.2.1.1
Cancel the common factor.
2K2=32
Step 5.4.2.2.1.2
Divide K by 1.
K=32
K=32
K=32
K=32
K=32
K=32
Step 6
Step 6.1
Substitute 32 for K.
x=√2(tet-et+32)
Step 6.2
Reorder terms.
x=√2(ett+32-et)
Step 6.3
To write ett as a fraction with a common denominator, multiply by 22.
x=√2(ett⋅22+32-et)
Step 6.4
Combine ett and 22.
x=√2(ett⋅22+32-et)
Step 6.5
Combine the numerators over the common denominator.
x=√2(ett⋅2+32-et)
Step 6.6
Move 2 to the left of ett.
x=√2(2ett+32-et)
Step 6.7
To write -et as a fraction with a common denominator, multiply by 22.
x=√2(2ett+32-et⋅22)
Step 6.8
Combine -et and 22.
x=√2(2ett+32+-et⋅22)
Step 6.9
Combine the numerators over the common denominator.
x=√22ett+3-et⋅22
Step 6.10
Multiply 2 by -1.
x=√22ett+3-2et2
Step 6.11
Combine 2 and 2ett+3-2et2.
x=√2(2ett+3-2et)2
Step 6.12
Reduce the expression by cancelling the common factors.
Step 6.12.1
Reduce the expression 2(2ett+3-2et)2 by cancelling the common factors.
Step 6.12.1.1
Cancel the common factor.
x=√2(2ett+3-2et)2
Step 6.12.1.2
Rewrite the expression.
x=√2ett+3-2et1
x=√2ett+3-2et1
Step 6.12.2
Divide 2ett+3-2et by 1.
x=√2ett+3-2et
x=√2ett+3-2et
Step 6.13
Reorder factors in x=√2ett+3-2et.
x=√2tet+3-2et
x=√2tet+3-2et