Calculus Examples

Solve the Differential Equation xe^(-t)(dx)/(dt)=t , x(0)=1
xe-tdxdt=txetdxdt=t , x(0)=1x(0)=1
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Divide each term in xe-tdxdt=txetdxdt=t by xe-txet and simplify.
Tap for more steps...
Step 1.1.1
Divide each term in xe-tdxdt=txetdxdt=t by xe-txet.
xe-tdxdtxe-t=txe-txetdxdtxet=txet
Step 1.1.2
Simplify the left side.
Tap for more steps...
Step 1.1.2.1
Cancel the common factor of xx.
Tap for more steps...
Step 1.1.2.1.1
Cancel the common factor.
xe-tdxdtxe-t=txe-t
Step 1.1.2.1.2
Rewrite the expression.
e-tdxdte-t=txe-t
e-tdxdte-t=txe-t
Step 1.1.2.2
Cancel the common factor of e-t.
Tap for more steps...
Step 1.1.2.2.1
Cancel the common factor.
e-tdxdte-t=txe-t
Step 1.1.2.2.2
Divide dxdt by 1.
dxdt=txe-t
dxdt=txe-t
dxdt=txe-t
dxdt=txe-t
Step 1.2
Regroup factors.
dxdt=te-t1x
Step 1.3
Multiply both sides by x.
xdxdt=x(te-t1x)
Step 1.4
Simplify.
Tap for more steps...
Step 1.4.1
Combine.
xdxdt=xt1e-tx
Step 1.4.2
Cancel the common factor of x.
Tap for more steps...
Step 1.4.2.1
Factor x out of e-tx.
xdxdt=xt1xe-t
Step 1.4.2.2
Cancel the common factor.
xdxdt=xt1xe-t
Step 1.4.2.3
Rewrite the expression.
xdxdt=t1e-t
xdxdt=t1e-t
Step 1.4.3
Multiply t by 1.
xdxdt=te-t
xdxdt=te-t
Step 1.5
Rewrite the equation.
xdx=te-tdt
xdx=te-tdt
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
xdx=te-tdt
Step 2.2
By the Power Rule, the integral of x with respect to x is 12x2.
12x2+C1=te-tdt
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Simplify the expression.
Tap for more steps...
Step 2.3.1.1
Negate the exponent of e-t and move it out of the denominator.
12x2+C1=t(e-t)-1dt
Step 2.3.1.2
Multiply the exponents in (e-t)-1.
Tap for more steps...
Step 2.3.1.2.1
Apply the power rule and multiply exponents, (am)n=amn.
12x2+C1=te-t-1dt
Step 2.3.1.2.2
Multiply -t-1.
Tap for more steps...
Step 2.3.1.2.2.1
Multiply -1 by -1.
12x2+C1=te1tdt
Step 2.3.1.2.2.2
Multiply t by 1.
12x2+C1=tetdt
12x2+C1=tetdt
12x2+C1=tetdt
12x2+C1=tetdt
Step 2.3.2
Integrate by parts using the formula udv=uv-vdu, where u=t and dv=et.
12x2+C1=tet-etdt
Step 2.3.3
The integral of et with respect to t is et.
12x2+C1=tet-(et+C2)
Step 2.3.4
Simplify.
12x2+C1=tet-et+C2
Step 2.3.5
Reorder terms.
12x2+C1=ett-et+C2
12x2+C1=ett-et+C2
Step 2.4
Group the constant of integration on the right side as K.
12x2=ett-et+K
12x2=ett-et+K
Step 3
Solve for x.
Tap for more steps...
Step 3.1
Multiply both sides of the equation by 2.
2(12x2)=2(ett-et+K)
Step 3.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify 2(12x2).
Tap for more steps...
Step 3.2.1.1.1
Combine 12 and x2.
2x22=2(ett-et+K)
Step 3.2.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
2x22=2(ett-et+K)
Step 3.2.1.1.2.2
Rewrite the expression.
x2=2(ett-et+K)
x2=2(ett-et+K)
x2=2(ett-et+K)
x2=2(ett-et+K)
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify 2(ett-et+K).
Tap for more steps...
Step 3.2.2.1.1
Apply the distributive property.
x2=2(ett)+2(-et)+2K
Step 3.2.2.1.2
Multiply -1 by 2.
x2=2ett-2et+2K
Step 3.2.2.1.3
Reorder factors in 2ett-2et+2K.
x2=2tet-2et+2K
x2=2tet-2et+2K
x2=2tet-2et+2K
x2=2tet-2et+2K
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
x=±2tet-2et+2K
Step 3.4
Factor 2 out of 2tet-2et+2K.
Tap for more steps...
Step 3.4.1
Factor 2 out of 2tet.
x=±2(tet)-2et+2K
Step 3.4.2
Factor 2 out of -2et.
x=±2(tet)+2(-et)+2K
Step 3.4.3
Factor 2 out of 2K.
x=±2(tet)+2(-et)+2K
Step 3.4.4
Factor 2 out of 2(tet)+2(-et).
x=±2(tet-et)+2K
Step 3.4.5
Factor 2 out of 2(tet-et)+2K.
x=±2(tet-et+K)
x=±2(tet-et+K)
Step 3.5
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.5.1
First, use the positive value of the ± to find the first solution.
x=2(tet-et+K)
Step 3.5.2
Next, use the negative value of the ± to find the second solution.
x=-2(tet-et+K)
Step 3.5.3
The complete solution is the result of both the positive and negative portions of the solution.
x=2(tet-et+K)
x=-2(tet-et+K)
x=2(tet-et+K)
x=-2(tet-et+K)
x=2(tet-et+K)
x=-2(tet-et+K)
Step 4
Since x is positive in the initial condition (0,1), only consider x=2(tet-et+K) to find the K. Substitute 0 for t and 1 for x.
1=2(0e0-e0+K)
Step 5
Solve for K.
Tap for more steps...
Step 5.1
Rewrite the equation as 2(0e0-e0+K)=1.
2(0e0-e0+K)=1
Step 5.2
To remove the radical on the left side of the equation, square both sides of the equation.
2(0e0-e0+K)2=12
Step 5.3
Simplify each side of the equation.
Tap for more steps...
Step 5.3.1
Use nax=axn to rewrite 2(0e0-e0+K) as (2(0e0-e0+K))12.
((2(0e0-e0+K))12)2=12
Step 5.3.2
Simplify the left side.
Tap for more steps...
Step 5.3.2.1
Simplify ((2(0e0-e0+K))12)2.
Tap for more steps...
Step 5.3.2.1.1
Multiply the exponents in ((2(0e0-e0+K))12)2.
Tap for more steps...
Step 5.3.2.1.1.1
Apply the power rule and multiply exponents, (am)n=amn.
(2(0e0-e0+K))122=12
Step 5.3.2.1.1.2
Cancel the common factor of 2.
Tap for more steps...
Step 5.3.2.1.1.2.1
Cancel the common factor.
(2(0e0-e0+K))122=12
Step 5.3.2.1.1.2.2
Rewrite the expression.
(2(0e0-e0+K))1=12
(2(0e0-e0+K))1=12
(2(0e0-e0+K))1=12
Step 5.3.2.1.2
Simplify each term.
Tap for more steps...
Step 5.3.2.1.2.1
Anything raised to 0 is 1.
(2(01-e0+K))1=12
Step 5.3.2.1.2.2
Multiply 0 by 1.
(2(0-e0+K))1=12
Step 5.3.2.1.2.3
Anything raised to 0 is 1.
(2(0-11+K))1=12
Step 5.3.2.1.2.4
Multiply -1 by 1.
(2(0-1+K))1=12
(2(0-1+K))1=12
Step 5.3.2.1.3
Simplify by multiplying through.
Tap for more steps...
Step 5.3.2.1.3.1
Subtract 1 from 0.
(2(-1+K))1=12
Step 5.3.2.1.3.2
Apply the distributive property.
(2-1+2K)1=12
Step 5.3.2.1.3.3
Multiply.
Tap for more steps...
Step 5.3.2.1.3.3.1
Multiply 2 by -1.
(-2+2K)1=12
Step 5.3.2.1.3.3.2
Simplify.
-2+2K=12
-2+2K=12
-2+2K=12
-2+2K=12
-2+2K=12
Step 5.3.3
Simplify the right side.
Tap for more steps...
Step 5.3.3.1
One to any power is one.
-2+2K=1
-2+2K=1
-2+2K=1
Step 5.4
Solve for K.
Tap for more steps...
Step 5.4.1
Move all terms not containing K to the right side of the equation.
Tap for more steps...
Step 5.4.1.1
Add 2 to both sides of the equation.
2K=1+2
Step 5.4.1.2
Add 1 and 2.
2K=3
2K=3
Step 5.4.2
Divide each term in 2K=3 by 2 and simplify.
Tap for more steps...
Step 5.4.2.1
Divide each term in 2K=3 by 2.
2K2=32
Step 5.4.2.2
Simplify the left side.
Tap for more steps...
Step 5.4.2.2.1
Cancel the common factor of 2.
Tap for more steps...
Step 5.4.2.2.1.1
Cancel the common factor.
2K2=32
Step 5.4.2.2.1.2
Divide K by 1.
K=32
K=32
K=32
K=32
K=32
K=32
Step 6
Substitute 32 for K in x=2(tet-et+K) and simplify.
Tap for more steps...
Step 6.1
Substitute 32 for K.
x=2(tet-et+32)
Step 6.2
Reorder terms.
x=2(ett+32-et)
Step 6.3
To write ett as a fraction with a common denominator, multiply by 22.
x=2(ett22+32-et)
Step 6.4
Combine ett and 22.
x=2(ett22+32-et)
Step 6.5
Combine the numerators over the common denominator.
x=2(ett2+32-et)
Step 6.6
Move 2 to the left of ett.
x=2(2ett+32-et)
Step 6.7
To write -et as a fraction with a common denominator, multiply by 22.
x=2(2ett+32-et22)
Step 6.8
Combine -et and 22.
x=2(2ett+32+-et22)
Step 6.9
Combine the numerators over the common denominator.
x=22ett+3-et22
Step 6.10
Multiply 2 by -1.
x=22ett+3-2et2
Step 6.11
Combine 2 and 2ett+3-2et2.
x=2(2ett+3-2et)2
Step 6.12
Reduce the expression by cancelling the common factors.
Tap for more steps...
Step 6.12.1
Reduce the expression 2(2ett+3-2et)2 by cancelling the common factors.
Tap for more steps...
Step 6.12.1.1
Cancel the common factor.
x=2(2ett+3-2et)2
Step 6.12.1.2
Rewrite the expression.
x=2ett+3-2et1
x=2ett+3-2et1
Step 6.12.2
Divide 2ett+3-2et by 1.
x=2ett+3-2et
x=2ett+3-2et
Step 6.13
Reorder factors in x=2ett+3-2et.
x=2tet+3-2et
x=2tet+3-2et
 [x2  12  π  xdx ]