Enter a problem...
Calculus Examples
dydx=(1+y2)tan(x)dydx=(1+y2)tan(x) , y(0)=√3y(0)=√3
Step 1
Step 1.1
Multiply both sides by 11+y211+y2.
11+y2dydx=11+y2((1+y2)tan(x))11+y2dydx=11+y2((1+y2)tan(x))
Step 1.2
Cancel the common factor of 1+y21+y2.
Step 1.2.1
Factor 1+y21+y2 out of (1+y2)tan(x)(1+y2)tan(x).
11+y2dydx=11+y2((1+y2)(tan(x)))11+y2dydx=11+y2((1+y2)(tan(x)))
Step 1.2.2
Cancel the common factor.
11+y2dydx=11+y2((1+y2)tan(x))
Step 1.2.3
Rewrite the expression.
11+y2dydx=tan(x)
11+y2dydx=tan(x)
Step 1.3
Rewrite the equation.
11+y2dy=tan(x)dx
11+y2dy=tan(x)dx
Step 2
Step 2.1
Set up an integral on each side.
∫11+y2dy=∫tan(x)dx
Step 2.2
Integrate the left side.
Step 2.2.1
Rewrite 1 as 12.
∫112+y2dy=∫tan(x)dx
Step 2.2.2
The integral of 112+y2 with respect to y is arctan(y)+C1.
arctan(y)+C1=∫tan(x)dx
arctan(y)+C1=∫tan(x)dx
Step 2.3
The integral of tan(x) with respect to x is ln(|sec(x)|).
arctan(y)+C1=ln(|sec(x)|)+C2
Step 2.4
Group the constant of integration on the right side as C.
arctan(y)=ln(|sec(x)|)+C
arctan(y)=ln(|sec(x)|)+C
Step 3
Take the inverse arctangent of both sides of the equation to extract y from inside the arctangent.
y=tan(ln(|sec(x)|)+C)
Step 4
Use the initial condition to find the value of C by substituting 0 for x and √3 for y in y=tan(ln(|sec(x)|)+C).
√3=tan(ln(|sec(0)|)+C)
Step 5
Step 5.1
Rewrite the equation as tan(ln(|sec(0)|)+C)=√3.
tan(ln(|sec(0)|)+C)=√3
Step 5.2
Take the inverse tangent of both sides of the equation to extract C from inside the tangent.
|sec(0)|=arctan(√3)
Step 5.3
Simplify the left side.
Step 5.3.1
Simplify |sec(0)|.
Step 5.3.1.1
The exact value of sec(0) is 1.
|1|=arctan(√3)
Step 5.3.1.2
The absolute value is the distance between a number and zero. The distance between 0 and 1 is 1.
1=arctan(√3)
1=arctan(√3)
1=arctan(√3)
Step 5.4
Simplify the right side.
Step 5.4.1
The exact value of arctan(√3) is π3.
1=π3
1=π3
Step 5.5
Divide 3.14159265 by 3.
1=1.04719755
Step 5.6
Since 1≠1.04719755, there are no solutions.
No solution
Step 5.7
The tangent function is positive in the first and third quadrants. To find the second solution, add the reference angle from π to find the solution in the fourth quadrant.
1=π+π3
Step 5.8
Solve for C.
Step 5.8.1
Simplify (3.14159265)+3.141592653.
Step 5.8.1.1
Divide 3.14159265 by 3.
1=3.14159265+1.04719755
Step 5.8.1.2
Add 3.14159265 and 1.04719755.
1=4.1887902
1=4.1887902
Step 5.8.2
Since 1≠4.1887902, there are no solutions.
No solution
No solution
No solution