Calculus Examples

Solve the Differential Equation 3x^2ydx+ydy=0
Step 1
Subtract from both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.1
Cancel the common factor.
Step 3.1.2
Rewrite the expression.
Step 3.2
Rewrite using the commutative property of multiplication.
Step 3.3
Combine and .
Step 3.4
Cancel the common factor of .
Tap for more steps...
Step 3.4.1
Factor out of .
Step 3.4.2
Cancel the common factor.
Step 3.4.3
Rewrite the expression.
Step 4
Integrate both sides.
Tap for more steps...
Step 4.1
Set up an integral on each side.
Step 4.2
Apply the constant rule.
Step 4.3
Integrate the right side.
Tap for more steps...
Step 4.3.1
Since is constant with respect to , move out of the integral.
Step 4.3.2
By the Power Rule, the integral of with respect to is .
Step 4.3.3
Simplify the answer.
Tap for more steps...
Step 4.3.3.1
Rewrite as .
Step 4.3.3.2
Simplify.
Tap for more steps...
Step 4.3.3.2.1
Combine and .
Step 4.3.3.2.2
Cancel the common factor of and .
Tap for more steps...
Step 4.3.3.2.2.1
Factor out of .
Step 4.3.3.2.2.2
Cancel the common factors.
Tap for more steps...
Step 4.3.3.2.2.2.1
Factor out of .
Step 4.3.3.2.2.2.2
Cancel the common factor.
Step 4.3.3.2.2.2.3
Rewrite the expression.
Step 4.3.3.2.2.2.4
Divide by .
Step 4.4
Group the constant of integration on the right side as .