Calculus Examples

Solve the Differential Equation (dy)/(dx)=sec(x)^2(2+y)^2 , y(pi)=-5
,
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.1
Factor out of .
Step 1.2.2
Cancel the common factor.
Step 1.2.3
Rewrite the expression.
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Let . Then . Rewrite using and .
Tap for more steps...
Step 2.2.1.1
Let . Find .
Tap for more steps...
Step 2.2.1.1.1
Differentiate .
Step 2.2.1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.2.1.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.1.1.4
Differentiate using the Power Rule which states that is where .
Step 2.2.1.1.5
Add and .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
Apply basic rules of exponents.
Tap for more steps...
Step 2.2.2.1
Move out of the denominator by raising it to the power.
Step 2.2.2.2
Multiply the exponents in .
Tap for more steps...
Step 2.2.2.2.1
Apply the power rule and multiply exponents, .
Step 2.2.2.2.2
Multiply by .
Step 2.2.3
By the Power Rule, the integral of with respect to is .
Step 2.2.4
Rewrite as .
Step 2.2.5
Replace all occurrences of with .
Step 2.3
Since the derivative of is , the integral of is .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Find the LCD of the terms in the equation.
Tap for more steps...
Step 3.1.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 3.1.2
Remove parentheses.
Step 3.1.3
The LCM of one and any expression is the expression.
Step 3.2
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 3.2.1
Multiply each term in by .
Step 3.2.2
Simplify the left side.
Tap for more steps...
Step 3.2.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.1
Move the leading negative in into the numerator.
Step 3.2.2.1.2
Cancel the common factor.
Step 3.2.2.1.3
Rewrite the expression.
Step 3.2.3
Simplify the right side.
Tap for more steps...
Step 3.2.3.1
Simplify each term.
Tap for more steps...
Step 3.2.3.1.1
Apply the distributive property.
Step 3.2.3.1.2
Move to the left of .
Step 3.2.3.1.3
Apply the distributive property.
Step 3.2.3.1.4
Move to the left of .
Step 3.2.3.2
Reorder factors in .
Step 3.3
Solve the equation.
Tap for more steps...
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Move all terms not containing to the right side of the equation.
Tap for more steps...
Step 3.3.2.1
Subtract from both sides of the equation.
Step 3.3.2.2
Subtract from both sides of the equation.
Step 3.3.3
Factor out of .
Tap for more steps...
Step 3.3.3.1
Factor out of .
Step 3.3.3.2
Factor out of .
Step 3.3.3.3
Factor out of .
Step 3.3.4
Divide each term in by and simplify.
Tap for more steps...
Step 3.3.4.1
Divide each term in by .
Step 3.3.4.2
Simplify the left side.
Tap for more steps...
Step 3.3.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.3.4.2.1.1
Cancel the common factor.
Step 3.3.4.2.1.2
Divide by .
Step 3.3.4.3
Simplify the right side.
Tap for more steps...
Step 3.3.4.3.1
Simplify terms.
Tap for more steps...
Step 3.3.4.3.1.1
Simplify each term.
Tap for more steps...
Step 3.3.4.3.1.1.1
Move the negative in front of the fraction.
Step 3.3.4.3.1.1.2
Move the negative in front of the fraction.
Step 3.3.4.3.1.1.3
Move the negative in front of the fraction.
Step 3.3.4.3.1.2
Combine the numerators over the common denominator.
Step 3.3.4.3.1.3
Simplify each term.
Tap for more steps...
Step 3.3.4.3.1.3.1
Factor out of .
Tap for more steps...
Step 3.3.4.3.1.3.1.1
Rewrite as .
Step 3.3.4.3.1.3.1.2
Factor out of .
Step 3.3.4.3.1.3.1.3
Factor out of .
Step 3.3.4.3.1.3.1.4
Rewrite as .
Step 3.3.4.3.1.3.2
Move the negative in front of the fraction.
Step 3.3.4.3.1.4
Combine the numerators over the common denominator.
Step 3.3.4.3.2
Simplify the numerator.
Tap for more steps...
Step 3.3.4.3.2.1
Apply the distributive property.
Step 3.3.4.3.2.2
Multiply by .
Step 3.3.4.3.2.3
Multiply by .
Step 3.3.4.3.3
Simplify with factoring out.
Tap for more steps...
Step 3.3.4.3.3.1
Rewrite as .
Step 3.3.4.3.3.2
Factor out of .
Step 3.3.4.3.3.3
Factor out of .
Step 3.3.4.3.3.4
Factor out of .
Step 3.3.4.3.3.5
Factor out of .
Step 3.3.4.3.3.6
Move the negative in front of the fraction.
Step 4
Simplify the constant of integration.
Step 5
Use the initial condition to find the value of by substituting for and for in .
Step 6
Solve for .
Tap for more steps...
Step 6.1
Rewrite the equation as .
Step 6.2
Factor each term.
Tap for more steps...
Step 6.2.1
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
Step 6.2.2
The exact value of is .
Step 6.2.3
Multiply .
Tap for more steps...
Step 6.2.3.1
Multiply by .
Step 6.2.3.2
Multiply by .
Step 6.2.4
Add and .
Step 6.2.5
Apply the reference angle by finding the angle with equivalent trig values in the first quadrant. Make the expression negative because tangent is negative in the second quadrant.
Step 6.2.6
The exact value of is .
Step 6.2.7
Multiply by .
Step 6.2.8
Add and .
Step 6.3
Find the LCD of the terms in the equation.
Tap for more steps...
Step 6.3.1
Finding the LCD of a list of values is the same as finding the LCM of the denominators of those values.
Step 6.3.2
The LCM of one and any expression is the expression.
Step 6.4
Multiply each term in by to eliminate the fractions.
Tap for more steps...
Step 6.4.1
Multiply each term in by .
Step 6.4.2
Simplify the left side.
Tap for more steps...
Step 6.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.4.2.1.1
Move the leading negative in into the numerator.
Step 6.4.2.1.2
Cancel the common factor.
Step 6.4.2.1.3
Rewrite the expression.
Step 6.4.2.2
Apply the distributive property.
Step 6.4.2.3
Multiply by .
Step 6.5
Solve the equation.
Tap for more steps...
Step 6.5.1
Move all terms containing to the left side of the equation.
Tap for more steps...
Step 6.5.1.1
Add to both sides of the equation.
Step 6.5.1.2
Add and .
Step 6.5.2
Add to both sides of the equation.
Step 6.5.3
Divide each term in by and simplify.
Tap for more steps...
Step 6.5.3.1
Divide each term in by .
Step 6.5.3.2
Simplify the left side.
Tap for more steps...
Step 6.5.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.5.3.2.1.1
Cancel the common factor.
Step 6.5.3.2.1.2
Divide by .
Step 7
Substitute for in and simplify.
Tap for more steps...
Step 7.1
Substitute for .
Step 7.2
Multiply the numerator and denominator of the fraction by .
Tap for more steps...
Step 7.2.1
Multiply by .
Step 7.2.2
Combine.
Step 7.3
Apply the distributive property.
Step 7.4
Cancel the common factor of .
Tap for more steps...
Step 7.4.1
Cancel the common factor.
Step 7.4.2
Rewrite the expression.
Step 7.5
Simplify the numerator.
Tap for more steps...
Step 7.5.1
Multiply by .
Step 7.5.2
Multiply by .
Step 7.5.3
Add and .
Step 7.6
Factor out of .
Tap for more steps...
Step 7.6.1
Factor out of .
Step 7.6.2
Factor out of .
Step 7.6.3
Factor out of .