Calculus Examples

Solve the Differential Equation (x-1)(dy)/(dx)+xy=(x-1)e^(-x)
Step 1
Rewrite the differential equation as .
Tap for more steps...
Step 1.1
Divide each term in by .
Step 1.2
Cancel the common factor of .
Tap for more steps...
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Divide by .
Step 1.3
Cancel the common factor of .
Tap for more steps...
Step 1.3.1
Cancel the common factor.
Step 1.3.2
Divide by .
Step 1.4
Factor out of .
Step 1.5
Reorder and .
Step 2
The integrating factor is defined by the formula , where .
Tap for more steps...
Step 2.1
Set up the integration.
Step 2.2
Integrate .
Tap for more steps...
Step 2.2.1
Divide by .
Tap for more steps...
Step 2.2.1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
-+
Step 2.2.1.2
Divide the highest order term in the dividend by the highest order term in divisor .
-+
Step 2.2.1.3
Multiply the new quotient term by the divisor.
-+
+-
Step 2.2.1.4
The expression needs to be subtracted from the dividend, so change all the signs in
-+
-+
Step 2.2.1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
-+
-+
+
Step 2.2.1.6
The final answer is the quotient plus the remainder over the divisor.
Step 2.2.2
Split the single integral into multiple integrals.
Step 2.2.3
Apply the constant rule.
Step 2.2.4
Let . Then . Rewrite using and .
Tap for more steps...
Step 2.2.4.1
Let . Find .
Tap for more steps...
Step 2.2.4.1.1
Differentiate .
Step 2.2.4.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.2.4.1.3
Differentiate using the Power Rule which states that is where .
Step 2.2.4.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.4.1.5
Add and .
Step 2.2.4.2
Rewrite the problem using and .
Step 2.2.5
The integral of with respect to is .
Step 2.2.6
Simplify.
Step 2.2.7
Replace all occurrences of with .
Step 2.3
Remove the constant of integration.
Step 3
Multiply each term by the integrating factor .
Tap for more steps...
Step 3.1
Multiply each term by .
Step 3.2
Simplify each term.
Tap for more steps...
Step 3.2.1
Combine and .
Step 3.2.2
Combine and .
Step 3.3
To write as a fraction with a common denominator, multiply by .
Step 3.4
Combine the numerators over the common denominator.
Step 3.5
Simplify the numerator.
Tap for more steps...
Step 3.5.1
Factor out of .
Tap for more steps...
Step 3.5.1.1
Factor out of .
Step 3.5.1.2
Factor out of .
Step 3.5.1.3
Factor out of .
Step 3.5.2
Apply the distributive property.
Step 3.5.3
Move to the left of .
Step 3.5.4
Rewrite as .
Step 3.6
Multiply by by adding the exponents.
Tap for more steps...
Step 3.6.1
Use the power rule to combine exponents.
Step 3.6.2
Combine the opposite terms in .
Tap for more steps...
Step 3.6.2.1
Subtract from .
Step 3.6.2.2
Add and .
Step 3.7
Exponentiation and log are inverse functions.
Step 3.8
Reorder factors in .
Step 4
Rewrite the left side as a result of differentiating a product.
Step 5
Set up an integral on each side.
Step 6
Integrate the left side.
Step 7
Integrate the right side.
Tap for more steps...
Step 7.1
Split the single integral into multiple integrals.
Step 7.2
By the Power Rule, the integral of with respect to is .
Step 7.3
Apply the constant rule.
Step 7.4
Simplify.
Step 8
Divide each term in by and simplify.
Tap for more steps...
Step 8.1
Divide each term in by .
Step 8.2
Simplify the left side.
Tap for more steps...
Step 8.2.1
Cancel the common factor of .
Tap for more steps...
Step 8.2.1.1
Cancel the common factor.
Step 8.2.1.2
Divide by .
Step 8.3
Simplify the right side.
Tap for more steps...
Step 8.3.1
Simplify each term.
Tap for more steps...
Step 8.3.1.1
Combine and .
Step 8.3.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 8.3.1.3
Combine.
Step 8.3.1.4
Multiply by .
Step 8.3.1.5
Move the negative in front of the fraction.