Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate.
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3
The derivative of with respect to is .
Step 1.4
Add and .
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Differentiate using the Constant Rule.
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Add and .
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the two sides have been shown to be equivalent, the equation is an identity.
is an identity.
is an identity.
Step 4
Set equal to the integral of .
Step 5
Step 5.1
Split the single integral into multiple integrals.
Step 5.2
The integral of with respect to is .
Step 5.3
Apply the constant rule.
Step 5.4
Simplify.
Step 6
Since the integral of will contain an integration constant, we can replace with .
Step 7
Set .
Step 8
Step 8.1
Differentiate with respect to .
Step 8.2
Differentiate.
Step 8.2.1
By the Sum Rule, the derivative of with respect to is .
Step 8.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 8.3
Evaluate .
Step 8.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 8.3.2
The derivative of with respect to is .
Step 8.3.3
Combine and .
Step 8.4
Differentiate using the function rule which states that the derivative of is .
Step 8.5
Simplify.
Step 8.5.1
Add and .
Step 8.5.2
Reorder terms.
Step 9
Step 9.1
Solve for .
Step 9.1.1
Move all terms containing variables to the left side of the equation.
Step 9.1.1.1
Subtract from both sides of the equation.
Step 9.1.1.2
Subtract from both sides of the equation.
Step 9.1.1.3
Combine the opposite terms in .
Step 9.1.1.3.1
Subtract from .
Step 9.1.1.3.2
Add and .
Step 9.1.2
Add to both sides of the equation.
Step 10
Step 10.1
Integrate both sides of .
Step 10.2
Evaluate .
Step 10.3
The integral of with respect to is .
Step 11
Substitute for in .
Step 12
Reorder factors in .