Enter a problem...
Calculus Examples
Step 1
Step 1.1
Regroup factors.
Step 1.2
Multiply both sides by .
Step 1.3
Simplify.
Step 1.3.1
Cancel the common factor of .
Step 1.3.1.1
Factor out of .
Step 1.3.1.2
Cancel the common factor.
Step 1.3.1.3
Rewrite the expression.
Step 1.3.2
Factor out of .
Step 1.3.3
Separate fractions.
Step 1.3.4
Convert from to .
Step 1.3.5
Convert from to .
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Simplify the expression.
Step 2.2.1.1
Negate the exponent of and move it out of the denominator.
Step 2.2.1.2
Simplify.
Step 2.2.1.2.1
Multiply the exponents in .
Step 2.2.1.2.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2.1.2
Move to the left of .
Step 2.2.1.2.1.3
Rewrite as .
Step 2.2.1.2.2
Multiply by .
Step 2.2.2
Let . Then , so . Rewrite using and .
Step 2.2.2.1
Let . Find .
Step 2.2.2.1.1
Differentiate .
Step 2.2.2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.2.1.3
Differentiate using the Power Rule which states that is where .
Step 2.2.2.1.4
Multiply by .
Step 2.2.2.2
Rewrite the problem using and .
Step 2.2.3
Since is constant with respect to , move out of the integral.
Step 2.2.4
The integral of with respect to is .
Step 2.2.5
Simplify.
Step 2.2.6
Replace all occurrences of with .
Step 2.3
Since the derivative of is , the integral of is .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Dividing two negative values results in a positive value.
Step 3.1.2.2
Divide by .
Step 3.1.3
Simplify the right side.
Step 3.1.3.1
Simplify each term.
Step 3.1.3.1.1
Move the negative one from the denominator of .
Step 3.1.3.1.2
Rewrite as .
Step 3.1.3.1.3
Move the negative one from the denominator of .
Step 3.1.3.1.4
Rewrite as .
Step 3.2
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 3.3
Expand the left side.
Step 3.3.1
Expand by moving outside the logarithm.
Step 3.3.2
The natural logarithm of is .
Step 3.3.3
Multiply by .
Step 3.4
Divide each term in by and simplify.
Step 3.4.1
Divide each term in by .
Step 3.4.2
Simplify the left side.
Step 3.4.2.1
Dividing two negative values results in a positive value.
Step 3.4.2.2
Divide by .
Step 3.4.3
Simplify the right side.
Step 3.4.3.1
Move the negative one from the denominator of .
Step 3.4.3.2
Rewrite as .
Step 4
Simplify the constant of integration.