Calculus Examples

Solve the Differential Equation (2xy)dx+(y^2-3x^2)dy=0
(2xy)dx+(y2-3x2)dy=0
Step 1
Find My where M(x,y)=2xy.
Tap for more steps...
Step 1.1
Differentiate M with respect to y.
My=ddy[2xy]
Step 1.2
Since 2x is constant with respect to y, the derivative of 2xy with respect to y is 2xddy[y].
My=2xddy[y]
Step 1.3
Differentiate using the Power Rule which states that ddy[yn] is nyn-1 where n=1.
My=2x1
Step 1.4
Multiply 2 by 1.
My=2x
My=2x
Step 2
Find Nx where N(x,y)=y2-3x2.
Tap for more steps...
Step 2.1
Differentiate N with respect to x.
Nx=ddx[y2-3x2]
Step 2.2
Differentiate.
Tap for more steps...
Step 2.2.1
By the Sum Rule, the derivative of y2-3x2 with respect to x is ddx[y2]+ddx[-3x2].
Nx=ddx[y2]+ddx[-3x2]
Step 2.2.2
Since y2 is constant with respect to x, the derivative of y2 with respect to x is 0.
Nx=0+ddx[-3x2]
Nx=0+ddx[-3x2]
Step 2.3
Evaluate ddx[-3x2].
Tap for more steps...
Step 2.3.1
Since -3 is constant with respect to x, the derivative of -3x2 with respect to x is -3ddx[x2].
Nx=0-3ddx[x2]
Step 2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
Nx=0-3(2x)
Step 2.3.3
Multiply 2 by -3.
Nx=0-6x
Nx=0-6x
Step 2.4
Subtract 6x from 0.
Nx=-6x
Nx=-6x
Step 3
Check that My=Nx.
Tap for more steps...
Step 3.1
Substitute 2x for My and -6x for Nx.
2x=-6x
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
2x=-6x is not an identity.
2x=-6x is not an identity.
Step 4
Find the integration factor μ(x,y)=eNx-MyMdy.
Tap for more steps...
Step 4.1
Substitute -6x for Nx.
-6x-MyM
Step 4.2
Substitute 2x for My.
-6x-(2x)M
Step 4.3
Substitute 2xy for M.
Tap for more steps...
Step 4.3.1
Substitute 2xy for M.
-6x-(2x)2xy
Step 4.3.2
Simplify the numerator.
Tap for more steps...
Step 4.3.2.1
Factor x out of -6x-12x.
Tap for more steps...
Step 4.3.2.1.1
Factor x out of -6x.
x-6-12x2xy
Step 4.3.2.1.2
Factor x out of -12x.
x-6+x(-12)2xy
Step 4.3.2.1.3
Factor x out of x-6+x(-12).
x(-6-12)2xy
x(-6-12)2xy
Step 4.3.2.2
Multiply -1 by 2.
x(-6-2)2xy
Step 4.3.2.3
Subtract 2 from -6.
x-82xy
x-82xy
Step 4.3.3
Cancel the common factor of x.
Tap for more steps...
Step 4.3.3.1
Cancel the common factor.
x-82xy
Step 4.3.3.2
Rewrite the expression.
-82y
-82y
Step 4.3.4
Cancel the common factor of -8 and 2.
Tap for more steps...
Step 4.3.4.1
Factor 2 out of -8.
2-42y
Step 4.3.4.2
Cancel the common factors.
Tap for more steps...
Step 4.3.4.2.1
Factor 2 out of 2y.
2-42(y)
Step 4.3.4.2.2
Cancel the common factor.
2-42y
Step 4.3.4.2.3
Rewrite the expression.
-4y
-4y
-4y
Step 4.3.5
Substitute 2xy for M.
-4y
-4y
Step 4.4
Find the integration factor μ(x,y)=eNx-MyMdy.
μ(x,y)=e-4ydy
μ(x,y)=e-4ydy
Step 5
Evaluate the integral e-4ydy.
Tap for more steps...
Step 5.1
Since -1 is constant with respect to y, move -1 out of the integral.
μ(x,y)=e-4ydy
Step 5.2
Since 4 is constant with respect to y, move 4 out of the integral.
μ(x,y)=e-(41ydy)
Step 5.3
Multiply 4 by -1.
μ(x,y)=e-41ydy
Step 5.4
The integral of 1y with respect to y is ln(|y|).
μ(x,y)=e-4(ln(|y|)+C)
Step 5.5
Simplify.
μ(x,y)=e-4ln(|y|)+C
Step 5.6
Simplify each term.
Tap for more steps...
Step 5.6.1
Simplify -4ln(|y|) by moving -4 inside the logarithm.
μ(x,y)=eln(|y|-4)+C
Step 5.6.2
Exponentiation and log are inverse functions.
μ(x,y)=|y|-4+C
Step 5.6.3
Remove the absolute value in |y|-4 because exponentiations with even powers are always positive.
μ(x,y)=y-4+C
Step 5.6.4
Rewrite the expression using the negative exponent rule b-n=1bn.
μ(x,y)=1y4+C
μ(x,y)=1y4+C
μ(x,y)=1y4+C
Step 6
Multiply both sides of 2xydx+(y2-3x2)dy=0 by the integration factor 1y4.
Tap for more steps...
Step 6.1
Multiply 2xy by 1y4.
2xy1y4dx+(y2-3x2)dy=0
Step 6.2
Cancel the common factor of y.
Tap for more steps...
Step 6.2.1
Factor y out of 2xy.
y(2x)1y4dx+(y2-3x2)dy=0
Step 6.2.2
Factor y out of y4.
y(2x)1yy3dx+(y2-3x2)dy=0
Step 6.2.3
Cancel the common factor.
y(2x)1yy3dx+(y2-3x2)dy=0
Step 6.2.4
Rewrite the expression.
2x1y3dx+(y2-3x2)dy=0
2x1y3dx+(y2-3x2)dy=0
Step 6.3
Combine 2 and 1y3.
x2y3dx+(y2-3x2)dy=0
Step 6.4
Combine x and 2y3.
x2y3dx+(y2-3x2)dy=0
Step 6.5
Move 2 to the left of x.
2xy3dx+(y2-3x2)dy=0
Step 6.6
Multiply y2-3x2 by 1y4.
2xy3dx+(y2-3x2)1y4dy=0
Step 6.7
Multiply y2-3x2 by 1y4.
2xy3dx+y2-3x2y4dy=0
2xy3dx+y2-3x2y4dy=0
Step 7
Set f(x,y) equal to the integral of M(x,y).
f(x,y)=2xy3dx
Step 8
Integrate M(x,y)=2xy3 to find f(x,y).
Tap for more steps...
Step 8.1
Since 2y3 is constant with respect to x, move 2y3 out of the integral.
f(x,y)=2y3xdx
Step 8.2
By the Power Rule, the integral of x with respect to x is 12x2.
f(x,y)=2y3(12x2+C)
Step 8.3
Simplify the answer.
Tap for more steps...
Step 8.3.1
Rewrite 2y3(12x2+C) as 2y312x2+C.
f(x,y)=2y312x2+C
Step 8.3.2
Simplify.
Tap for more steps...
Step 8.3.2.1
Multiply 2y3 by 12.
f(x,y)=2y32x2+C
Step 8.3.2.2
Move 2 to the left of y3.
f(x,y)=22y3x2+C
Step 8.3.2.3
Multiply 2 by y3.
f(x,y)=22y3x2+C
Step 8.3.2.4
Cancel the common factor of 2.
Tap for more steps...
Step 8.3.2.4.1
Cancel the common factor.
f(x,y)=22y3x2+C
Step 8.3.2.4.2
Rewrite the expression.
f(x,y)=1y3x2+C
f(x,y)=1y3x2+C
Step 8.3.2.5
Combine 1y3 and x2.
f(x,y)=x2y3+C
f(x,y)=x2y3+C
f(x,y)=x2y3+C
f(x,y)=x2y3+C
Step 9
Since the integral of g(y) will contain an integration constant, we can replace C with g(y).
f(x,y)=x2y3+g(y)
Step 10
Set fy=N(x,y).
fy=y2-3x2y4
Step 11
Find fy.
Tap for more steps...
Step 11.1
Differentiate f with respect to y.
ddy[x2y3+g(y)]=y2-3x2y4
Step 11.2
By the Sum Rule, the derivative of x2y3+g(y) with respect to y is ddy[x2y3]+ddy[g(y)].
ddy[x2y3]+ddy[g(y)]=y2-3x2y4
Step 11.3
Evaluate ddy[x2y3].
Tap for more steps...
Step 11.3.1
Since x2 is constant with respect to y, the derivative of x2y3 with respect to y is x2ddy[1y3].
x2ddy[1y3]+ddy[g(y)]=y2-3x2y4
Step 11.3.2
Rewrite 1y3 as (y3)-1.
x2ddy[(y3)-1]+ddy[g(y)]=y2-3x2y4
Step 11.3.3
Differentiate using the chain rule, which states that ddy[f(g(y))] is f(g(y))g(y) where f(y)=y-1 and g(y)=y3.
Tap for more steps...
Step 11.3.3.1
To apply the Chain Rule, set u as y3.
x2(ddu[u-1]ddy[y3])+ddy[g(y)]=y2-3x2y4
Step 11.3.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=-1.
x2(-u-2ddy[y3])+ddy[g(y)]=y2-3x2y4
Step 11.3.3.3
Replace all occurrences of u with y3.
x2(-(y3)-2ddy[y3])+ddy[g(y)]=y2-3x2y4
x2(-(y3)-2ddy[y3])+ddy[g(y)]=y2-3x2y4
Step 11.3.4
Differentiate using the Power Rule which states that ddy[yn] is nyn-1 where n=3.
x2(-(y3)-2(3y2))+ddy[g(y)]=y2-3x2y4
Step 11.3.5
Multiply the exponents in (y3)-2.
Tap for more steps...
Step 11.3.5.1
Apply the power rule and multiply exponents, (am)n=amn.
x2(-y3-2(3y2))+ddy[g(y)]=y2-3x2y4
Step 11.3.5.2
Multiply 3 by -2.
x2(-y-6(3y2))+ddy[g(y)]=y2-3x2y4
x2(-y-6(3y2))+ddy[g(y)]=y2-3x2y4
Step 11.3.6
Multiply 3 by -1.
x2(-3y-6y2)+ddy[g(y)]=y2-3x2y4
Step 11.3.7
Multiply y-6 by y2 by adding the exponents.
Tap for more steps...
Step 11.3.7.1
Move y2.
x2(-3(y2y-6))+ddy[g(y)]=y2-3x2y4
Step 11.3.7.2
Use the power rule aman=am+n to combine exponents.
x2(-3y2-6)+ddy[g(y)]=y2-3x2y4
Step 11.3.7.3
Subtract 6 from 2.
x2(-3y-4)+ddy[g(y)]=y2-3x2y4
x2(-3y-4)+ddy[g(y)]=y2-3x2y4
x2(-3y-4)+ddy[g(y)]=y2-3x2y4
Step 11.4
Differentiate using the function rule which states that the derivative of g(y) is dgdy.
x2(-3y-4)+dgdy=y2-3x2y4
Step 11.5
Simplify.
Tap for more steps...
Step 11.5.1
Rewrite the expression using the negative exponent rule b-n=1bn.
x2(-31y4)+dgdy=y2-3x2y4
Step 11.5.2
Combine terms.
Tap for more steps...
Step 11.5.2.1
Combine -3 and 1y4.
x2-3y4+dgdy=y2-3x2y4
Step 11.5.2.2
Move the negative in front of the fraction.
x2(-3y4)+dgdy=y2-3x2y4
Step 11.5.2.3
Combine x2 and 3y4.
-x23y4+dgdy=y2-3x2y4
Step 11.5.2.4
Move 3 to the left of x2.
-3x2y4+dgdy=y2-3x2y4
-3x2y4+dgdy=y2-3x2y4
Step 11.5.3
Reorder terms.
dgdy-3x2y4=y2-3x2y4
dgdy-3x2y4=y2-3x2y4
dgdy-3x2y4=y2-3x2y4
Step 12
Solve for dgdy.
Tap for more steps...
Step 12.1
Solve for dgdy.
Tap for more steps...
Step 12.1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 12.1.1.1
Subtract y2-3x2y4 from both sides of the equation.
dgdy-3x2y4-y2-3x2y4=0
Step 12.1.1.2
Combine the numerators over the common denominator.
dgdy+-3x2-(y2-3x2)y4=0
Step 12.1.1.3
Simplify each term.
Tap for more steps...
Step 12.1.1.3.1
Apply the distributive property.
dgdy+-3x2-y2-(-3x2)y4=0
Step 12.1.1.3.2
Multiply -3 by -1.
dgdy+-3x2-y2+3x2y4=0
dgdy+-3x2-y2+3x2y4=0
Step 12.1.1.4
Combine the opposite terms in -3x2-y2+3x2.
Tap for more steps...
Step 12.1.1.4.1
Add -3x2 and 3x2.
dgdy+-y2+0y4=0
Step 12.1.1.4.2
Add -y2 and 0.
dgdy+-y2y4=0
dgdy+-y2y4=0
Step 12.1.1.5
Simplify each term.
Tap for more steps...
Step 12.1.1.5.1
Cancel the common factor of y2 and y4.
Tap for more steps...
Step 12.1.1.5.1.1
Factor y2 out of -y2.
dgdy+y2-1y4=0
Step 12.1.1.5.1.2
Cancel the common factors.
Tap for more steps...
Step 12.1.1.5.1.2.1
Factor y2 out of y4.
dgdy+y2-1y2y2=0
Step 12.1.1.5.1.2.2
Cancel the common factor.
dgdy+y2-1y2y2=0
Step 12.1.1.5.1.2.3
Rewrite the expression.
dgdy+-1y2=0
dgdy+-1y2=0
dgdy+-1y2=0
Step 12.1.1.5.2
Move the negative in front of the fraction.
dgdy-1y2=0
dgdy-1y2=0
dgdy-1y2=0
Step 12.1.2
Add 1y2 to both sides of the equation.
dgdy=1y2
dgdy=1y2
dgdy=1y2
Step 13
Find the antiderivative of 1y2 to find g(y).
Tap for more steps...
Step 13.1
Integrate both sides of dgdy=1y2.
dgdydy=1y2dy
Step 13.2
Evaluate dgdydy.
g(y)=1y2dy
Step 13.3
Move y2 out of the denominator by raising it to the -1 power.
g(y)=(y2)-1dy
Step 13.4
Multiply the exponents in (y2)-1.
Tap for more steps...
Step 13.4.1
Apply the power rule and multiply exponents, (am)n=amn.
g(y)=y2-1dy
Step 13.4.2
Multiply 2 by -1.
g(y)=y-2dy
g(y)=y-2dy
Step 13.5
By the Power Rule, the integral of y-2 with respect to y is -y-1.
g(y)=-y-1+C
Step 13.6
Rewrite -y-1+C as -1y+C.
g(y)=-1y+C
g(y)=-1y+C
Step 14
Substitute for g(y) in f(x,y)=x2y3+g(y).
f(x,y)=x2y3-1y+C
 [x2  12  π  xdx ]