Enter a problem...
Calculus Examples
(2xy)dx+(y2-3x2)dy=0
Step 1
Step 1.1
Differentiate M with respect to y.
∂M∂y=ddy[2xy]
Step 1.2
Since 2x is constant with respect to y, the derivative of 2xy with respect to y is 2xddy[y].
∂M∂y=2xddy[y]
Step 1.3
Differentiate using the Power Rule which states that ddy[yn] is nyn-1 where n=1.
∂M∂y=2x⋅1
Step 1.4
Multiply 2 by 1.
∂M∂y=2x
∂M∂y=2x
Step 2
Step 2.1
Differentiate N with respect to x.
∂N∂x=ddx[y2-3x2]
Step 2.2
Differentiate.
Step 2.2.1
By the Sum Rule, the derivative of y2-3x2 with respect to x is ddx[y2]+ddx[-3x2].
∂N∂x=ddx[y2]+ddx[-3x2]
Step 2.2.2
Since y2 is constant with respect to x, the derivative of y2 with respect to x is 0.
∂N∂x=0+ddx[-3x2]
∂N∂x=0+ddx[-3x2]
Step 2.3
Evaluate ddx[-3x2].
Step 2.3.1
Since -3 is constant with respect to x, the derivative of -3x2 with respect to x is -3ddx[x2].
∂N∂x=0-3ddx[x2]
Step 2.3.2
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=2.
∂N∂x=0-3(2x)
Step 2.3.3
Multiply 2 by -3.
∂N∂x=0-6x
∂N∂x=0-6x
Step 2.4
Subtract 6x from 0.
∂N∂x=-6x
∂N∂x=-6x
Step 3
Step 3.1
Substitute 2x for ∂M∂y and -6x for ∂N∂x.
2x=-6x
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
2x=-6x is not an identity.
2x=-6x is not an identity.
Step 4
Step 4.1
Substitute -6x for ∂N∂x.
-6x-∂M∂yM
Step 4.2
Substitute 2x for ∂M∂y.
-6x-(2x)M
Step 4.3
Substitute 2xy for M.
Step 4.3.1
Substitute 2xy for M.
-6x-(2x)2xy
Step 4.3.2
Simplify the numerator.
Step 4.3.2.1
Factor x out of -6x-1⋅2x.
Step 4.3.2.1.1
Factor x out of -6x.
x⋅-6-1⋅2x2xy
Step 4.3.2.1.2
Factor x out of -1⋅2x.
x⋅-6+x(-1⋅2)2xy
Step 4.3.2.1.3
Factor x out of x⋅-6+x(-1⋅2).
x(-6-1⋅2)2xy
x(-6-1⋅2)2xy
Step 4.3.2.2
Multiply -1 by 2.
x(-6-2)2xy
Step 4.3.2.3
Subtract 2 from -6.
x⋅-82xy
x⋅-82xy
Step 4.3.3
Cancel the common factor of x.
Step 4.3.3.1
Cancel the common factor.
x⋅-82xy
Step 4.3.3.2
Rewrite the expression.
-82y
-82y
Step 4.3.4
Cancel the common factor of -8 and 2.
Step 4.3.4.1
Factor 2 out of -8.
2⋅-42y
Step 4.3.4.2
Cancel the common factors.
Step 4.3.4.2.1
Factor 2 out of 2y.
2⋅-42(y)
Step 4.3.4.2.2
Cancel the common factor.
2⋅-42y
Step 4.3.4.2.3
Rewrite the expression.
-4y
-4y
-4y
Step 4.3.5
Substitute 2xy for M.
-4y
-4y
Step 4.4
Find the integration factor μ(x,y)=e∫∂N∂x-∂M∂yMdy.
μ(x,y)=e∫-4ydy
μ(x,y)=e∫-4ydy
Step 5
Step 5.1
Since -1 is constant with respect to y, move -1 out of the integral.
μ(x,y)=e-∫4ydy
Step 5.2
Since 4 is constant with respect to y, move 4 out of the integral.
μ(x,y)=e-(4∫1ydy)
Step 5.3
Multiply 4 by -1.
μ(x,y)=e-4∫1ydy
Step 5.4
The integral of 1y with respect to y is ln(|y|).
μ(x,y)=e-4(ln(|y|)+C)
Step 5.5
Simplify.
μ(x,y)=e-4ln(|y|)+C
Step 5.6
Simplify each term.
Step 5.6.1
Simplify -4ln(|y|) by moving -4 inside the logarithm.
μ(x,y)=eln(|y|-4)+C
Step 5.6.2
Exponentiation and log are inverse functions.
μ(x,y)=|y|-4+C
Step 5.6.3
Remove the absolute value in |y|-4 because exponentiations with even powers are always positive.
μ(x,y)=y-4+C
Step 5.6.4
Rewrite the expression using the negative exponent rule b-n=1bn.
μ(x,y)=1y4+C
μ(x,y)=1y4+C
μ(x,y)=1y4+C
Step 6
Step 6.1
Multiply 2xy by 1y4.
2xy1y4dx+(y2-3x2)dy=0
Step 6.2
Cancel the common factor of y.
Step 6.2.1
Factor y out of 2xy.
y(2x)1y4dx+(y2-3x2)dy=0
Step 6.2.2
Factor y out of y4.
y(2x)1y⋅y3dx+(y2-3x2)dy=0
Step 6.2.3
Cancel the common factor.
y(2x)1y⋅y3dx+(y2-3x2)dy=0
Step 6.2.4
Rewrite the expression.
2x1y3dx+(y2-3x2)dy=0
2x1y3dx+(y2-3x2)dy=0
Step 6.3
Combine 2 and 1y3.
x2y3dx+(y2-3x2)dy=0
Step 6.4
Combine x and 2y3.
x⋅2y3dx+(y2-3x2)dy=0
Step 6.5
Move 2 to the left of x.
2xy3dx+(y2-3x2)dy=0
Step 6.6
Multiply y2-3x2 by 1y4.
2xy3dx+(y2-3x2)1y4dy=0
Step 6.7
Multiply y2-3x2 by 1y4.
2xy3dx+y2-3x2y4dy=0
2xy3dx+y2-3x2y4dy=0
Step 7
Set f(x,y) equal to the integral of M(x,y).
f(x,y)=∫2xy3dx
Step 8
Step 8.1
Since 2y3 is constant with respect to x, move 2y3 out of the integral.
f(x,y)=2y3∫xdx
Step 8.2
By the Power Rule, the integral of x with respect to x is 12x2.
f(x,y)=2y3(12x2+C)
Step 8.3
Simplify the answer.
Step 8.3.1
Rewrite 2y3(12x2+C) as 2y3⋅12x2+C.
f(x,y)=2y3⋅12x2+C
Step 8.3.2
Simplify.
Step 8.3.2.1
Multiply 2y3 by 12.
f(x,y)=2y3⋅2x2+C
Step 8.3.2.2
Move 2 to the left of y3.
f(x,y)=22⋅y3x2+C
Step 8.3.2.3
Multiply 2 by y3.
f(x,y)=22y3x2+C
Step 8.3.2.4
Cancel the common factor of 2.
Step 8.3.2.4.1
Cancel the common factor.
f(x,y)=22y3x2+C
Step 8.3.2.4.2
Rewrite the expression.
f(x,y)=1y3x2+C
f(x,y)=1y3x2+C
Step 8.3.2.5
Combine 1y3 and x2.
f(x,y)=x2y3+C
f(x,y)=x2y3+C
f(x,y)=x2y3+C
f(x,y)=x2y3+C
Step 9
Since the integral of g(y) will contain an integration constant, we can replace C with g(y).
f(x,y)=x2y3+g(y)
Step 10
Set ∂f∂y=N(x,y).
∂f∂y=y2-3x2y4
Step 11
Step 11.1
Differentiate f with respect to y.
ddy[x2y3+g(y)]=y2-3x2y4
Step 11.2
By the Sum Rule, the derivative of x2y3+g(y) with respect to y is ddy[x2y3]+ddy[g(y)].
ddy[x2y3]+ddy[g(y)]=y2-3x2y4
Step 11.3
Evaluate ddy[x2y3].
Step 11.3.1
Since x2 is constant with respect to y, the derivative of x2y3 with respect to y is x2ddy[1y3].
x2ddy[1y3]+ddy[g(y)]=y2-3x2y4
Step 11.3.2
Rewrite 1y3 as (y3)-1.
x2ddy[(y3)-1]+ddy[g(y)]=y2-3x2y4
Step 11.3.3
Differentiate using the chain rule, which states that ddy[f(g(y))] is f′(g(y))g′(y) where f(y)=y-1 and g(y)=y3.
Step 11.3.3.1
To apply the Chain Rule, set u as y3.
x2(ddu[u-1]ddy[y3])+ddy[g(y)]=y2-3x2y4
Step 11.3.3.2
Differentiate using the Power Rule which states that ddu[un] is nun-1 where n=-1.
x2(-u-2ddy[y3])+ddy[g(y)]=y2-3x2y4
Step 11.3.3.3
Replace all occurrences of u with y3.
x2(-(y3)-2ddy[y3])+ddy[g(y)]=y2-3x2y4
x2(-(y3)-2ddy[y3])+ddy[g(y)]=y2-3x2y4
Step 11.3.4
Differentiate using the Power Rule which states that ddy[yn] is nyn-1 where n=3.
x2(-(y3)-2(3y2))+ddy[g(y)]=y2-3x2y4
Step 11.3.5
Multiply the exponents in (y3)-2.
Step 11.3.5.1
Apply the power rule and multiply exponents, (am)n=amn.
x2(-y3⋅-2(3y2))+ddy[g(y)]=y2-3x2y4
Step 11.3.5.2
Multiply 3 by -2.
x2(-y-6(3y2))+ddy[g(y)]=y2-3x2y4
x2(-y-6(3y2))+ddy[g(y)]=y2-3x2y4
Step 11.3.6
Multiply 3 by -1.
x2(-3y-6y2)+ddy[g(y)]=y2-3x2y4
Step 11.3.7
Multiply y-6 by y2 by adding the exponents.
Step 11.3.7.1
Move y2.
x2(-3(y2y-6))+ddy[g(y)]=y2-3x2y4
Step 11.3.7.2
Use the power rule aman=am+n to combine exponents.
x2(-3y2-6)+ddy[g(y)]=y2-3x2y4
Step 11.3.7.3
Subtract 6 from 2.
x2(-3y-4)+ddy[g(y)]=y2-3x2y4
x2(-3y-4)+ddy[g(y)]=y2-3x2y4
x2(-3y-4)+ddy[g(y)]=y2-3x2y4
Step 11.4
Differentiate using the function rule which states that the derivative of g(y) is dgdy.
x2(-3y-4)+dgdy=y2-3x2y4
Step 11.5
Simplify.
Step 11.5.1
Rewrite the expression using the negative exponent rule b-n=1bn.
x2(-31y4)+dgdy=y2-3x2y4
Step 11.5.2
Combine terms.
Step 11.5.2.1
Combine -3 and 1y4.
x2-3y4+dgdy=y2-3x2y4
Step 11.5.2.2
Move the negative in front of the fraction.
x2(-3y4)+dgdy=y2-3x2y4
Step 11.5.2.3
Combine x2 and 3y4.
-x2⋅3y4+dgdy=y2-3x2y4
Step 11.5.2.4
Move 3 to the left of x2.
-3x2y4+dgdy=y2-3x2y4
-3x2y4+dgdy=y2-3x2y4
Step 11.5.3
Reorder terms.
dgdy-3x2y4=y2-3x2y4
dgdy-3x2y4=y2-3x2y4
dgdy-3x2y4=y2-3x2y4
Step 12
Step 12.1
Solve for dgdy.
Step 12.1.1
Move all terms containing variables to the left side of the equation.
Step 12.1.1.1
Subtract y2-3x2y4 from both sides of the equation.
dgdy-3x2y4-y2-3x2y4=0
Step 12.1.1.2
Combine the numerators over the common denominator.
dgdy+-3x2-(y2-3x2)y4=0
Step 12.1.1.3
Simplify each term.
Step 12.1.1.3.1
Apply the distributive property.
dgdy+-3x2-y2-(-3x2)y4=0
Step 12.1.1.3.2
Multiply -3 by -1.
dgdy+-3x2-y2+3x2y4=0
dgdy+-3x2-y2+3x2y4=0
Step 12.1.1.4
Combine the opposite terms in -3x2-y2+3x2.
Step 12.1.1.4.1
Add -3x2 and 3x2.
dgdy+-y2+0y4=0
Step 12.1.1.4.2
Add -y2 and 0.
dgdy+-y2y4=0
dgdy+-y2y4=0
Step 12.1.1.5
Simplify each term.
Step 12.1.1.5.1
Cancel the common factor of y2 and y4.
Step 12.1.1.5.1.1
Factor y2 out of -y2.
dgdy+y2⋅-1y4=0
Step 12.1.1.5.1.2
Cancel the common factors.
Step 12.1.1.5.1.2.1
Factor y2 out of y4.
dgdy+y2⋅-1y2y2=0
Step 12.1.1.5.1.2.2
Cancel the common factor.
dgdy+y2⋅-1y2y2=0
Step 12.1.1.5.1.2.3
Rewrite the expression.
dgdy+-1y2=0
dgdy+-1y2=0
dgdy+-1y2=0
Step 12.1.1.5.2
Move the negative in front of the fraction.
dgdy-1y2=0
dgdy-1y2=0
dgdy-1y2=0
Step 12.1.2
Add 1y2 to both sides of the equation.
dgdy=1y2
dgdy=1y2
dgdy=1y2
Step 13
Step 13.1
Integrate both sides of dgdy=1y2.
∫dgdydy=∫1y2dy
Step 13.2
Evaluate ∫dgdydy.
g(y)=∫1y2dy
Step 13.3
Move y2 out of the denominator by raising it to the -1 power.
g(y)=∫(y2)-1dy
Step 13.4
Multiply the exponents in (y2)-1.
Step 13.4.1
Apply the power rule and multiply exponents, (am)n=amn.
g(y)=∫y2⋅-1dy
Step 13.4.2
Multiply 2 by -1.
g(y)=∫y-2dy
g(y)=∫y-2dy
Step 13.5
By the Power Rule, the integral of y-2 with respect to y is -y-1.
g(y)=-y-1+C
Step 13.6
Rewrite -y-1+C as -1y+C.
g(y)=-1y+C
g(y)=-1y+C
Step 14
Substitute for g(y) in f(x,y)=x2y3+g(y).
f(x,y)=x2y3-1y+C