Calculus Examples

Solve the Differential Equation (dy)/(dx)=(1-2x)^2
Step 1
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.3.1.1
Let . Find .
Tap for more steps...
Step 2.3.1.1.1
Differentiate .
Step 2.3.1.1.2
Differentiate.
Tap for more steps...
Step 2.3.1.1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.3.1.1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.1.1.3
Evaluate .
Tap for more steps...
Step 2.3.1.1.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.1.1.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.1.1.3.3
Multiply by .
Step 2.3.1.1.4
Subtract from .
Step 2.3.1.2
Rewrite the problem using and .
Step 2.3.2
Simplify.
Tap for more steps...
Step 2.3.2.1
Move the negative in front of the fraction.
Step 2.3.2.2
Combine and .
Step 2.3.3
Since is constant with respect to , move out of the integral.
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
By the Power Rule, the integral of with respect to is .
Step 2.3.6
Simplify.
Tap for more steps...
Step 2.3.6.1
Rewrite as .
Step 2.3.6.2
Simplify.
Tap for more steps...
Step 2.3.6.2.1
Multiply by .
Step 2.3.6.2.2
Multiply by .
Step 2.3.7
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .