Enter a problem...
Calculus Examples
Step 1
Step 1.1
Divide each term in by and simplify.
Step 1.1.1
Divide each term in by .
Step 1.1.2
Simplify the left side.
Step 1.1.2.1
Cancel the common factor of .
Step 1.1.2.1.1
Cancel the common factor.
Step 1.1.2.1.2
Divide by .
Step 1.2
Multiply both sides by .
Step 1.3
Cancel the common factor of .
Step 1.3.1
Cancel the common factor.
Step 1.3.2
Rewrite the expression.
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Let . Then , so . Rewrite using and .
Step 2.2.1.1
Let . Find .
Step 2.2.1.1.1
Rewrite.
Step 2.2.1.1.2
Divide by .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
Move the negative in front of the fraction.
Step 2.2.3
Since is constant with respect to , move out of the integral.
Step 2.2.4
Apply basic rules of exponents.
Step 2.2.4.1
Use to rewrite as .
Step 2.2.4.2
Move out of the denominator by raising it to the power.
Step 2.2.4.3
Multiply the exponents in .
Step 2.2.4.3.1
Apply the power rule and multiply exponents, .
Step 2.2.4.3.2
Combine and .
Step 2.2.4.3.3
Move the negative in front of the fraction.
Step 2.2.5
By the Power Rule, the integral of with respect to is .
Step 2.2.6
Simplify.
Step 2.2.6.1
Rewrite as .
Step 2.2.6.2
Multiply by .
Step 2.2.7
Replace all occurrences of with .
Step 2.3
The integral of with respect to is .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Cancel the common factor.
Step 3.1.2.2
Divide by .
Step 3.1.3
Simplify the right side.
Step 3.1.3.1
Simplify each term.
Step 3.1.3.1.1
Rewrite as .
Step 3.1.3.1.2
Simplify by moving inside the logarithm.
Step 3.1.3.1.3
Move the negative in front of the fraction.
Step 3.1.3.1.4
Multiply .
Step 3.1.3.1.4.1
Multiply by .
Step 3.1.3.1.4.2
Multiply by .
Step 3.1.3.1.5
Move the negative in front of the fraction.
Step 3.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 3.3
Simplify the left side.
Step 3.3.1
Simplify .
Step 3.3.1.1
Multiply the exponents in .
Step 3.3.1.1.1
Apply the power rule and multiply exponents, .
Step 3.3.1.1.2
Cancel the common factor of .
Step 3.3.1.1.2.1
Cancel the common factor.
Step 3.3.1.1.2.2
Rewrite the expression.
Step 3.3.1.2
Simplify.
Step 3.4
Solve for .
Step 3.4.1
Subtract from both sides of the equation.
Step 3.4.2
Divide each term in by and simplify.
Step 3.4.2.1
Divide each term in by .
Step 3.4.2.2
Simplify the left side.
Step 3.4.2.2.1
Dividing two negative values results in a positive value.
Step 3.4.2.2.2
Divide by .
Step 3.4.2.3
Simplify the right side.
Step 3.4.2.3.1
Simplify each term.
Step 3.4.2.3.1.1
Move the negative one from the denominator of .
Step 3.4.2.3.1.2
Rewrite as .
Step 3.4.2.3.1.3
Divide by .
Step 4
Simplify the constant of integration.