Enter a problem...
Calculus Examples
Step 1
Step 1.1
Divide each term in by .
Step 1.2
Cancel the common factor of .
Step 1.2.1
Cancel the common factor.
Step 1.2.2
Divide by .
Step 1.3
Cancel the common factor of and .
Step 1.3.1
Factor out of .
Step 1.3.2
Cancel the common factors.
Step 1.3.2.1
Factor out of .
Step 1.3.2.2
Cancel the common factor.
Step 1.3.2.3
Rewrite the expression.
Step 1.4
Factor out of .
Step 1.5
Reorder and .
Step 2
Step 2.1
Set up the integration.
Step 2.2
Integrate .
Step 2.2.1
Since is constant with respect to , move out of the integral.
Step 2.2.2
The integral of with respect to is .
Step 2.2.3
Simplify.
Step 2.3
Remove the constant of integration.
Step 2.4
Use the logarithmic power rule.
Step 2.5
Exponentiation and log are inverse functions.
Step 3
Step 3.1
Multiply each term by .
Step 3.2
Simplify each term.
Step 3.2.1
Combine and .
Step 3.2.2
Cancel the common factor of .
Step 3.2.2.1
Factor out of .
Step 3.2.2.2
Cancel the common factor.
Step 3.2.2.3
Rewrite the expression.
Step 3.2.3
Rewrite using the commutative property of multiplication.
Step 3.3
Cancel the common factor of .
Step 3.3.1
Factor out of .
Step 3.3.2
Cancel the common factor.
Step 3.3.3
Rewrite the expression.
Step 4
Rewrite the left side as a result of differentiating a product.
Step 5
Set up an integral on each side.
Step 6
Integrate the left side.
Step 7
Step 7.1
Since is constant with respect to , move out of the integral.
Step 7.2
Apply basic rules of exponents.
Step 7.2.1
Move out of the denominator by raising it to the power.
Step 7.2.2
Multiply the exponents in .
Step 7.2.2.1
Apply the power rule and multiply exponents, .
Step 7.2.2.2
Multiply by .
Step 7.3
By the Power Rule, the integral of with respect to is .
Step 7.4
Simplify the answer.
Step 7.4.1
Rewrite as .
Step 7.4.2
Simplify.
Step 7.4.2.1
Multiply by .
Step 7.4.2.2
Combine and .
Step 7.4.2.3
Move the negative in front of the fraction.
Step 8
Step 8.1
Divide each term in by .
Step 8.2
Simplify the left side.
Step 8.2.1
Cancel the common factor of .
Step 8.2.1.1
Cancel the common factor.
Step 8.2.1.2
Divide by .
Step 8.3
Simplify the right side.
Step 8.3.1
Simplify each term.
Step 8.3.1.1
Multiply the numerator by the reciprocal of the denominator.
Step 8.3.1.2
Multiply .
Step 8.3.1.2.1
Multiply by .
Step 8.3.1.2.2
Multiply by by adding the exponents.
Step 8.3.1.2.2.1
Multiply by .
Step 8.3.1.2.2.1.1
Raise to the power of .
Step 8.3.1.2.2.1.2
Use the power rule to combine exponents.
Step 8.3.1.2.2.2
Add and .