Calculus Examples

Solve the Differential Equation (dy)/(dx)=(sec(x)^2)/(tan(y)^2)
dydx=sec2(x)tan2(y)
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by tan2(y).
tan2(y)dydx=tan2(y)sec2(x)tan2(y)
Step 1.2
Cancel the common factor of tan2(y).
Tap for more steps...
Step 1.2.1
Cancel the common factor.
tan2(y)dydx=tan2(y)sec2(x)tan2(y)
Step 1.2.2
Rewrite the expression.
tan2(y)dydx=sec2(x)
tan2(y)dydx=sec2(x)
Step 1.3
Rewrite the equation.
tan2(y)dy=sec2(x)dx
tan2(y)dy=sec2(x)dx
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
tan2(y)dy=sec2(x)dx
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Using the Pythagorean Identity, rewrite tan2(y) as -1+sec2(y).
-1+sec2(y)dy=sec2(x)dx
Step 2.2.2
Split the single integral into multiple integrals.
-1dy+sec2(y)dy=sec2(x)dx
Step 2.2.3
Apply the constant rule.
-y+C1+sec2(y)dy=sec2(x)dx
Step 2.2.4
Since the derivative of tan(y) is sec2(y), the integral of sec2(y) is tan(y).
-y+C1+tan(y)+C2=sec2(x)dx
Step 2.2.5
Simplify.
-y+tan(y)+C3=sec2(x)dx
-y+tan(y)+C3=sec2(x)dx
Step 2.3
Since the derivative of tan(x) is sec2(x), the integral of sec2(x) is tan(x).
-y+tan(y)+C3=tan(x)+C4
Step 2.4
Group the constant of integration on the right side as K.
-y+tan(y)=tan(x)+K
-y+tan(y)=tan(x)+K
 [x2  12  π  xdx ]