Enter a problem...
Calculus Examples
Step 1
Step 1.1
Rewrite.
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 2.4
Evaluate .
Step 2.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Multiply by .
Step 2.5
Reorder terms.
Step 3
Step 3.1
Differentiate with respect to .
Step 3.2
By the Sum Rule, the derivative of with respect to is .
Step 3.3
Evaluate .
Step 3.3.1
Differentiate using the Product Rule which states that is where and .
Step 3.3.2
The derivative of with respect to is .
Step 3.3.3
Differentiate using the Power Rule which states that is where .
Step 3.3.4
Multiply by .
Step 3.4
Differentiate using the Constant Rule.
Step 3.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 3.4.2
Add and .
Step 4
Step 4.1
Substitute for and for .
Step 4.2
Since the two sides have been shown to be equivalent, the equation is an identity.
is an identity.
is an identity.
Step 5
Set equal to the integral of .
Step 6
Step 6.1
Apply the constant rule.
Step 7
Since the integral of will contain an integration constant, we can replace with .
Step 8
Set .
Step 9
Step 9.1
Differentiate with respect to .
Step 9.2
By the Sum Rule, the derivative of with respect to is .
Step 9.3
Evaluate .
Step 9.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 9.3.2
By the Sum Rule, the derivative of with respect to is .
Step 9.3.3
Differentiate using the Product Rule which states that is where and .
Step 9.3.4
The derivative of with respect to is .
Step 9.3.5
Differentiate using the Power Rule which states that is where .
Step 9.3.6
Since is constant with respect to , the derivative of with respect to is .
Step 9.3.7
Multiply by .
Step 9.3.8
Add and .
Step 9.4
Differentiate using the function rule which states that the derivative of is .
Step 9.5
Simplify.
Step 9.5.1
Apply the distributive property.
Step 9.5.2
Reorder terms.
Step 10
Step 10.1
Move all terms not containing to the right side of the equation.
Step 10.1.1
Subtract from both sides of the equation.
Step 10.1.2
Subtract from both sides of the equation.
Step 10.1.3
Combine the opposite terms in .
Step 10.1.3.1
Subtract from .
Step 10.1.3.2
Add and .
Step 10.1.3.3
Subtract from .
Step 11
Step 11.1
Integrate both sides of .
Step 11.2
Evaluate .
Step 11.3
The integral of with respect to is .
Step 11.4
Add and .
Step 12
Substitute for in .
Step 13
Step 13.1
Simplify each term.
Step 13.1.1
Apply the distributive property.
Step 13.1.2
Multiply by .
Step 13.2
Reorder factors in .