Enter a problem...
Calculus Examples
,
Step 1
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
By the Power Rule, the integral of with respect to is .
Step 2.3.6
By the Power Rule, the integral of with respect to is .
Step 2.3.7
Simplify.
Step 2.3.7.1
Simplify.
Step 2.3.7.1.1
Combine and .
Step 2.3.7.1.2
Combine and .
Step 2.3.7.2
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Use the initial condition to find the value of by substituting for and for in .
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Simplify .
Step 4.2.1
Simplify each term.
Step 4.2.1.1
One to any power is one.
Step 4.2.1.2
One to any power is one.
Step 4.2.1.3
Multiply by .
Step 4.2.1.4
One to any power is one.
Step 4.2.1.5
Multiply by .
Step 4.2.2
Simplify by subtracting numbers.
Step 4.2.2.1
Subtract from .
Step 4.2.2.2
Add and .
Step 4.3
Subtract from both sides of the equation.
Step 5
Step 5.1
Substitute for .
Step 5.2
Combine and .