Enter a problem...
Calculus Examples
Step 1
Write the problem as a mathematical expression.
Step 2
Subtract from both sides of the equation.
Step 3
Multiply both sides by .
Step 4
Step 4.1
Cancel the common factor of .
Step 4.1.1
Factor out of .
Step 4.1.2
Cancel the common factor.
Step 4.1.3
Rewrite the expression.
Step 4.2
Combine and .
Step 4.3
Rewrite using the commutative property of multiplication.
Step 4.4
Cancel the common factor of .
Step 4.4.1
Move the leading negative in into the numerator.
Step 4.4.2
Factor out of .
Step 4.4.3
Cancel the common factor.
Step 4.4.4
Rewrite the expression.
Step 4.5
Move the negative in front of the fraction.
Step 5
Step 5.1
Set up an integral on each side.
Step 5.2
Integrate the left side.
Step 5.2.1
Divide by .
Step 5.2.1.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | + | + | + |
Step 5.2.1.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | + | + |
Step 5.2.1.3
Multiply the new quotient term by the divisor.
+ | + | + | + | ||||||||
+ | + | + |
Step 5.2.1.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | + | + | ||||||||
- | - | - |
Step 5.2.1.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | + | + | ||||||||
- | - | - | |||||||||
- |
Step 5.2.1.6
The final answer is the quotient plus the remainder over the divisor.
Step 5.2.2
Split the single integral into multiple integrals.
Step 5.2.3
Apply the constant rule.
Step 5.2.4
Since is constant with respect to , move out of the integral.
Step 5.2.5
Simplify the expression.
Step 5.2.5.1
Reorder and .
Step 5.2.5.2
Rewrite as .
Step 5.2.6
The integral of with respect to is .
Step 5.2.7
Simplify.
Step 5.3
Integrate the right side.
Step 5.3.1
Since is constant with respect to , move out of the integral.
Step 5.3.2
Apply basic rules of exponents.
Step 5.3.2.1
Move out of the denominator by raising it to the power.
Step 5.3.2.2
Multiply the exponents in .
Step 5.3.2.2.1
Apply the power rule and multiply exponents, .
Step 5.3.2.2.2
Multiply by .
Step 5.3.3
By the Power Rule, the integral of with respect to is .
Step 5.3.4
Simplify the answer.
Step 5.3.4.1
Rewrite as .
Step 5.3.4.2
Simplify.
Step 5.3.4.2.1
Multiply by .
Step 5.3.4.2.2
Multiply by .
Step 5.4
Group the constant of integration on the right side as .