Enter a problem...
Calculus Examples
Step 1
Subtract from both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Step 3.1
Rewrite using the commutative property of multiplication.
Step 3.2
Combine and .
Step 3.3
Cancel the common factor of .
Step 3.3.1
Factor out of .
Step 3.3.2
Cancel the common factor.
Step 3.3.3
Rewrite the expression.
Step 3.4
Rewrite using the commutative property of multiplication.
Step 3.5
Cancel the common factor of .
Step 3.5.1
Move the leading negative in into the numerator.
Step 3.5.2
Factor out of .
Step 3.5.3
Cancel the common factor.
Step 3.5.4
Rewrite the expression.
Step 3.6
Move the negative in front of the fraction.
Step 4
Step 4.1
Set up an integral on each side.
Step 4.2
Integrate the left side.
Step 4.2.1
Since is constant with respect to , move out of the integral.
Step 4.2.2
The integral of with respect to is .
Step 4.2.3
Simplify.
Step 4.3
Integrate the right side.
Step 4.3.1
Since is constant with respect to , move out of the integral.
Step 4.3.2
The integral of with respect to is .
Step 4.3.3
Simplify.
Step 4.4
Group the constant of integration on the right side as .
Step 5
Step 5.1
Move all the terms containing a logarithm to the left side of the equation.
Step 5.2
Simplify the left side.
Step 5.2.1
Simplify .
Step 5.2.1.1
Simplify by moving inside the logarithm.
Step 5.2.1.2
Use the product property of logarithms, .
Step 5.3
To solve for , rewrite the equation using properties of logarithms.
Step 5.4
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 5.5
Solve for .
Step 5.5.1
Rewrite the equation as .
Step 5.5.2
Divide each term in by and simplify.
Step 5.5.2.1
Divide each term in by .
Step 5.5.2.2
Simplify the left side.
Step 5.5.2.2.1
Cancel the common factor of .
Step 5.5.2.2.1.1
Cancel the common factor.
Step 5.5.2.2.1.2
Divide by .
Step 5.5.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.5.4
Simplify .
Step 5.5.4.1
Rewrite as .
Step 5.5.4.2
Multiply by .
Step 5.5.4.3
Combine and simplify the denominator.
Step 5.5.4.3.1
Multiply by .
Step 5.5.4.3.2
Raise to the power of .
Step 5.5.4.3.3
Use the power rule to combine exponents.
Step 5.5.4.3.4
Add and .
Step 5.5.4.3.5
Rewrite as .
Step 5.5.4.3.5.1
Use to rewrite as .
Step 5.5.4.3.5.2
Apply the power rule and multiply exponents, .
Step 5.5.4.3.5.3
Combine and .
Step 5.5.4.3.5.4
Cancel the common factor of .
Step 5.5.4.3.5.4.1
Cancel the common factor.
Step 5.5.4.3.5.4.2
Rewrite the expression.
Step 5.5.4.3.5.5
Simplify.
Step 5.5.4.4
Rewrite as .
Step 5.5.4.5
Combine using the product rule for radicals.
Step 5.5.4.6
Reorder factors in .
Step 5.5.5
Remove the absolute value term. This creates a on the right side of the equation because .
Step 5.5.6
Remove the absolute value in because exponentiations with even powers are always positive.
Step 6
Simplify the constant of integration.