Enter a problem...
Calculus Examples
Step 1
Add to both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Step 3.1
Cancel the common factor of .
Step 3.1.1
Factor out of .
Step 3.1.2
Cancel the common factor.
Step 3.1.3
Rewrite the expression.
Step 3.2
Multiply by .
Step 4
Step 4.1
Set up an integral on each side.
Step 4.2
By the Power Rule, the integral of with respect to is .
Step 4.3
Integrate the right side.
Step 4.3.1
Split the fraction into multiple fractions.
Step 4.3.2
Split the single integral into multiple integrals.
Step 4.3.3
Cancel the common factor of and .
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Cancel the common factors.
Step 4.3.3.2.1
Raise to the power of .
Step 4.3.3.2.2
Factor out of .
Step 4.3.3.2.3
Cancel the common factor.
Step 4.3.3.2.4
Rewrite the expression.
Step 4.3.3.2.5
Divide by .
Step 4.3.4
By the Power Rule, the integral of with respect to is .
Step 4.3.5
Since is constant with respect to , move out of the integral.
Step 4.3.6
The integral of with respect to is .
Step 4.3.7
Simplify.
Step 4.4
Group the constant of integration on the right side as .
Step 5
Step 5.1
Multiply both sides of the equation by .
Step 5.2
Simplify both sides of the equation.
Step 5.2.1
Simplify the left side.
Step 5.2.1.1
Simplify .
Step 5.2.1.1.1
Combine and .
Step 5.2.1.1.2
Cancel the common factor of .
Step 5.2.1.1.2.1
Cancel the common factor.
Step 5.2.1.1.2.2
Rewrite the expression.
Step 5.2.2
Simplify the right side.
Step 5.2.2.1
Simplify .
Step 5.2.2.1.1
Combine and .
Step 5.2.2.1.2
Apply the distributive property.
Step 5.2.2.1.3
Simplify.
Step 5.2.2.1.3.1
Cancel the common factor of .
Step 5.2.2.1.3.1.1
Cancel the common factor.
Step 5.2.2.1.3.1.2
Rewrite the expression.
Step 5.2.2.1.3.2
Multiply by .
Step 5.3
Simplify by moving inside the logarithm.
Step 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.5
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.6
The complete solution is the result of both the positive and negative portions of the solution.
Step 5.6.1
First, use the positive value of the to find the first solution.
Step 5.6.2
Next, use the negative value of the to find the second solution.
Step 5.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
Simplify the constant of integration.