Calculus Examples

Solve the Differential Equation x(yd)y-(x^2+2)dx=0
Step 1
Add to both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.1
Factor out of .
Step 3.1.2
Cancel the common factor.
Step 3.1.3
Rewrite the expression.
Step 3.2
Multiply by .
Step 4
Integrate both sides.
Tap for more steps...
Step 4.1
Set up an integral on each side.
Step 4.2
By the Power Rule, the integral of with respect to is .
Step 4.3
Integrate the right side.
Tap for more steps...
Step 4.3.1
Split the fraction into multiple fractions.
Step 4.3.2
Split the single integral into multiple integrals.
Step 4.3.3
Cancel the common factor of and .
Tap for more steps...
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.3.2.1
Raise to the power of .
Step 4.3.3.2.2
Factor out of .
Step 4.3.3.2.3
Cancel the common factor.
Step 4.3.3.2.4
Rewrite the expression.
Step 4.3.3.2.5
Divide by .
Step 4.3.4
By the Power Rule, the integral of with respect to is .
Step 4.3.5
Since is constant with respect to , move out of the integral.
Step 4.3.6
The integral of with respect to is .
Step 4.3.7
Simplify.
Step 4.4
Group the constant of integration on the right side as .
Step 5
Solve for .
Tap for more steps...
Step 5.1
Multiply both sides of the equation by .
Step 5.2
Simplify both sides of the equation.
Tap for more steps...
Step 5.2.1
Simplify the left side.
Tap for more steps...
Step 5.2.1.1
Simplify .
Tap for more steps...
Step 5.2.1.1.1
Combine and .
Step 5.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.2.1.1.2.1
Cancel the common factor.
Step 5.2.1.1.2.2
Rewrite the expression.
Step 5.2.2
Simplify the right side.
Tap for more steps...
Step 5.2.2.1
Simplify .
Tap for more steps...
Step 5.2.2.1.1
Combine and .
Step 5.2.2.1.2
Apply the distributive property.
Step 5.2.2.1.3
Simplify.
Tap for more steps...
Step 5.2.2.1.3.1
Cancel the common factor of .
Tap for more steps...
Step 5.2.2.1.3.1.1
Cancel the common factor.
Step 5.2.2.1.3.1.2
Rewrite the expression.
Step 5.2.2.1.3.2
Multiply by .
Step 5.3
Simplify by moving inside the logarithm.
Step 5.4
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 5.5
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.6
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 5.6.1
First, use the positive value of the to find the first solution.
Step 5.6.2
Next, use the negative value of the to find the second solution.
Step 5.6.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 6
Simplify the constant of integration.