Enter a problem...
Calculus Examples
Step 1
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Combine and .
Step 2.3.2
Apply the distributive property.
Step 2.3.3
Use the power rule to combine exponents.
Step 2.3.4
Add and .
Step 2.3.5
Raise to the power of .
Step 2.3.6
Use the power rule to combine exponents.
Step 2.3.7
Add and .
Step 2.3.8
Reorder and .
Step 2.3.9
Move .
Step 2.3.10
Reorder and .
Step 2.3.11
Divide by .
Step 2.3.11.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
- | + | + | + | - | + | + | + | + |
Step 2.3.11.2
Divide the highest order term in the dividend by the highest order term in divisor .
- | |||||||||||||||||||
- | + | + | + | - | + | + | + | + |
Step 2.3.11.3
Multiply the new quotient term by the divisor.
- | |||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
+ | - | - |
Step 2.3.11.4
The expression needs to be subtracted from the dividend, so change all the signs in
- | |||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + |
Step 2.3.11.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | |||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - |
Step 2.3.11.6
Pull the next terms from the original dividend down into the current dividend.
- | |||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + |
Step 2.3.11.7
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | ||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + |
Step 2.3.11.8
Multiply the new quotient term by the divisor.
- | - | ||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
+ | - | - |
Step 2.3.11.9
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | ||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + |
Step 2.3.11.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | ||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ |
Step 2.3.11.11
Pull the next term from the original dividend down into the current dividend.
- | - | ||||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + |
Step 2.3.11.12
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | + | - | ||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + |
Step 2.3.11.13
Multiply the new quotient term by the divisor.
- | - | + | - | ||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
+ | - | - |
Step 2.3.11.14
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | + | - | ||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + |
Step 2.3.11.15
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | + | - | ||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + |
Step 2.3.11.16
Pull the next terms from the original dividend down into the current dividend.
- | - | + | - | ||||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + |
Step 2.3.11.17
Divide the highest order term in the dividend by the highest order term in divisor .
- | - | + | - | - | |||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + |
Step 2.3.11.18
Multiply the new quotient term by the divisor.
- | - | + | - | - | |||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
+ | - | - |
Step 2.3.11.19
The expression needs to be subtracted from the dividend, so change all the signs in
- | - | + | - | - | |||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + |
Step 2.3.11.20
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
- | - | + | - | - | |||||||||||||||
- | + | + | + | - | + | + | + | + | |||||||||||
- | + | + | |||||||||||||||||
+ | - | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + | + | |||||||||||||||||
- | + | + | |||||||||||||||||
+ | + |
Step 2.3.11.21
The final answer is the quotient plus the remainder over the divisor.
Step 2.3.12
Split the single integral into multiple integrals.
Step 2.3.13
Since is constant with respect to , move out of the integral.
Step 2.3.14
By the Power Rule, the integral of with respect to is .
Step 2.3.15
Since is constant with respect to , move out of the integral.
Step 2.3.16
By the Power Rule, the integral of with respect to is .
Step 2.3.17
Since is constant with respect to , move out of the integral.
Step 2.3.18
By the Power Rule, the integral of with respect to is .
Step 2.3.19
Apply the constant rule.
Step 2.3.20
Simplify.
Step 2.3.20.1
Combine and .
Step 2.3.20.2
Combine and .
Step 2.3.21
Write the fraction using partial fraction decomposition.
Step 2.3.21.1
Decompose the fraction and multiply through by the common denominator.
Step 2.3.21.1.1
Factor the fraction.
Step 2.3.21.1.1.1
Factor out of .
Step 2.3.21.1.1.1.1
Factor out of .
Step 2.3.21.1.1.1.2
Factor out of .
Step 2.3.21.1.1.1.3
Factor out of .
Step 2.3.21.1.1.2
Factor by grouping.
Step 2.3.21.1.1.2.1
For a polynomial of the form , rewrite the middle term as a sum of two terms whose product is and whose sum is .
Step 2.3.21.1.1.2.1.1
Factor out of .
Step 2.3.21.1.1.2.1.2
Rewrite as plus
Step 2.3.21.1.1.2.1.3
Apply the distributive property.
Step 2.3.21.1.1.2.2
Factor out the greatest common factor from each group.
Step 2.3.21.1.1.2.2.1
Group the first two terms and the last two terms.
Step 2.3.21.1.1.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 2.3.21.1.1.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 2.3.21.1.2
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 2.3.21.1.3
For each factor in the denominator, create a new fraction using the factor as the denominator, and an unknown value as the numerator. Since the factor in the denominator is linear, put a single variable in its place .
Step 2.3.21.1.4
Multiply each fraction in the equation by the denominator of the original expression. In this case, the denominator is .
Step 2.3.21.1.5
Cancel the common factor of .
Step 2.3.21.1.5.1
Cancel the common factor.
Step 2.3.21.1.5.2
Rewrite the expression.
Step 2.3.21.1.6
Cancel the common factor of .
Step 2.3.21.1.6.1
Cancel the common factor.
Step 2.3.21.1.6.2
Divide by .
Step 2.3.21.1.7
Apply the distributive property.
Step 2.3.21.1.8
Multiply.
Step 2.3.21.1.8.1
Multiply by .
Step 2.3.21.1.8.2
Multiply by .
Step 2.3.21.1.9
Simplify each term.
Step 2.3.21.1.9.1
Cancel the common factor of .
Step 2.3.21.1.9.1.1
Cancel the common factor.
Step 2.3.21.1.9.1.2
Divide by .
Step 2.3.21.1.9.2
Apply the distributive property.
Step 2.3.21.1.9.3
Move to the left of .
Step 2.3.21.1.9.4
Cancel the common factor of .
Step 2.3.21.1.9.4.1
Cancel the common factor.
Step 2.3.21.1.9.4.2
Divide by .
Step 2.3.21.1.9.5
Apply the distributive property.
Step 2.3.21.1.9.6
Rewrite using the commutative property of multiplication.
Step 2.3.21.1.9.7
Move to the left of .
Step 2.3.21.1.9.8
Rewrite as .
Step 2.3.21.1.10
Simplify the expression.
Step 2.3.21.1.10.1
Move .
Step 2.3.21.1.10.2
Move .
Step 2.3.21.2
Create equations for the partial fraction variables and use them to set up a system of equations.
Step 2.3.21.2.1
Create an equation for the partial fraction variables by equating the coefficients of from each side of the equation. For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3.21.2.2
Create an equation for the partial fraction variables by equating the coefficients of the terms not containing . For the equation to be equal, the equivalent coefficients on each side of the equation must be equal.
Step 2.3.21.2.3
Set up the system of equations to find the coefficients of the partial fractions.
Step 2.3.21.3
Solve the system of equations.
Step 2.3.21.3.1
Solve for in .
Step 2.3.21.3.1.1
Rewrite the equation as .
Step 2.3.21.3.1.2
Rewrite as .
Step 2.3.21.3.1.3
Add to both sides of the equation.
Step 2.3.21.3.2
Replace all occurrences of with in each equation.
Step 2.3.21.3.2.1
Replace all occurrences of in with .
Step 2.3.21.3.2.2
Simplify the right side.
Step 2.3.21.3.2.2.1
Simplify .
Step 2.3.21.3.2.2.1.1
Simplify each term.
Step 2.3.21.3.2.2.1.1.1
Apply the distributive property.
Step 2.3.21.3.2.2.1.1.2
Multiply by .
Step 2.3.21.3.2.2.1.1.3
Rewrite as .
Step 2.3.21.3.2.2.1.2
Subtract from .
Step 2.3.21.3.3
Solve for in .
Step 2.3.21.3.3.1
Rewrite the equation as .
Step 2.3.21.3.3.2
Move all terms not containing to the right side of the equation.
Step 2.3.21.3.3.2.1
Add to both sides of the equation.
Step 2.3.21.3.3.2.2
Add and .
Step 2.3.21.3.3.3
Divide each term in by and simplify.
Step 2.3.21.3.3.3.1
Divide each term in by .
Step 2.3.21.3.3.3.2
Simplify the left side.
Step 2.3.21.3.3.3.2.1
Cancel the common factor of .
Step 2.3.21.3.3.3.2.1.1
Cancel the common factor.
Step 2.3.21.3.3.3.2.1.2
Divide by .
Step 2.3.21.3.3.3.3
Simplify the right side.
Step 2.3.21.3.3.3.3.1
Cancel the common factor of and .
Step 2.3.21.3.3.3.3.1.1
Factor out of .
Step 2.3.21.3.3.3.3.1.2
Cancel the common factors.
Step 2.3.21.3.3.3.3.1.2.1
Factor out of .
Step 2.3.21.3.3.3.3.1.2.2
Cancel the common factor.
Step 2.3.21.3.3.3.3.1.2.3
Rewrite the expression.
Step 2.3.21.3.3.3.3.2
Move the negative in front of the fraction.
Step 2.3.21.3.4
Replace all occurrences of with in each equation.
Step 2.3.21.3.4.1
Replace all occurrences of in with .
Step 2.3.21.3.4.2
Simplify .
Step 2.3.21.3.4.2.1
Simplify the left side.
Step 2.3.21.3.4.2.1.1
Remove parentheses.
Step 2.3.21.3.4.2.2
Simplify the right side.
Step 2.3.21.3.4.2.2.1
Simplify .
Step 2.3.21.3.4.2.2.1.1
To write as a fraction with a common denominator, multiply by .
Step 2.3.21.3.4.2.2.1.2
Combine and .
Step 2.3.21.3.4.2.2.1.3
Combine the numerators over the common denominator.
Step 2.3.21.3.4.2.2.1.4
Simplify the numerator.
Step 2.3.21.3.4.2.2.1.4.1
Multiply by .
Step 2.3.21.3.4.2.2.1.4.2
Subtract from .
Step 2.3.21.3.5
List all of the solutions.
Step 2.3.21.4
Replace each of the partial fraction coefficients in with the values found for and .
Step 2.3.21.5
Simplify.
Step 2.3.21.5.1
Multiply the numerator by the reciprocal of the denominator.
Step 2.3.21.5.2
Multiply by .
Step 2.3.21.5.3
Factor out of .
Step 2.3.21.5.4
Rewrite as .
Step 2.3.21.5.5
Factor out of .
Step 2.3.21.5.6
Rewrite negatives.
Step 2.3.21.5.6.1
Rewrite as .
Step 2.3.21.5.6.2
Move the negative in front of the fraction.
Step 2.3.21.5.7
Multiply the numerator by the reciprocal of the denominator.
Step 2.3.21.5.8
Multiply by .
Step 2.3.21.5.9
Move to the left of .
Step 2.3.22
Split the single integral into multiple integrals.
Step 2.3.23
Combine and .
Step 2.3.24
Since is constant with respect to , move out of the integral.
Step 2.3.25
Since is constant with respect to , move out of the integral.
Step 2.3.26
Let . Then . Rewrite using and .
Step 2.3.26.1
Let . Find .
Step 2.3.26.1.1
Differentiate .
Step 2.3.26.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.26.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.26.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.26.1.5
Add and .
Step 2.3.26.2
Rewrite the problem using and .
Step 2.3.27
The integral of with respect to is .
Step 2.3.28
Since is constant with respect to , move out of the integral.
Step 2.3.29
Since is constant with respect to , move out of the integral.
Step 2.3.30
Let . Then . Rewrite using and .
Step 2.3.30.1
Let . Find .
Step 2.3.30.1.1
Differentiate .
Step 2.3.30.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.30.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.30.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.30.1.5
Add and .
Step 2.3.30.2
Rewrite the problem using and .
Step 2.3.31
The integral of with respect to is .
Step 2.3.32
Simplify.
Step 2.3.33
Substitute back in for each integration substitution variable.
Step 2.3.33.1
Replace all occurrences of with .
Step 2.3.33.2
Replace all occurrences of with .
Step 2.3.34
Reorder terms.
Step 2.3.35
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .