Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
By the Sum Rule, the derivative of with respect to is .
Step 1.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.4
Differentiate using the Power Rule which states that is where .
Step 1.5
Add and .
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
Differentiate.
Step 2.2.1
By the Sum Rule, the derivative of with respect to is .
Step 2.2.2
Differentiate using the Power Rule which states that is where .
Step 2.3
Evaluate .
Step 2.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2
Differentiate using the Power Rule which states that is where .
Step 2.3.3
Multiply by .
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
is not an identity.
is not an identity.
Step 4
Step 4.1
Substitute for .
Step 4.2
Substitute for .
Step 4.3
Substitute for .
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify the numerator.
Step 4.3.2.1
Apply the distributive property.
Step 4.3.2.2
Multiply by .
Step 4.3.2.3
Multiply by .
Step 4.3.2.4
Add and .
Step 4.3.2.5
Factor out of .
Step 4.3.2.5.1
Factor out of .
Step 4.3.2.5.2
Factor out of .
Step 4.3.2.5.3
Factor out of .
Step 4.3.3
Factor out of .
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Factor out of .
Step 4.3.3.3
Factor out of .
Step 4.3.4
Cancel the common factor of and .
Step 4.3.4.1
Factor out of .
Step 4.3.4.2
Factor out of .
Step 4.3.4.3
Factor out of .
Step 4.3.4.4
Rewrite as .
Step 4.3.4.5
Cancel the common factor.
Step 4.3.4.6
Rewrite the expression.
Step 4.3.5
Multiply by .
Step 4.3.6
Move the negative in front of the fraction.
Step 4.4
Find the integration factor .
Step 5
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Since is constant with respect to , move out of the integral.
Step 5.3
Multiply by .
Step 5.4
The integral of with respect to is .
Step 5.5
Simplify.
Step 5.6
Simplify each term.
Step 5.6.1
Simplify by moving inside the logarithm.
Step 5.6.2
Exponentiation and log are inverse functions.
Step 5.6.3
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.6.4
Rewrite the expression using the negative exponent rule .
Step 6
Step 6.1
Multiply by .
Step 6.2
Multiply by .
Step 6.3
Multiply by .
Step 6.4
Multiply by .
Step 6.5
Factor out of .
Step 6.5.1
Factor out of .
Step 6.5.2
Factor out of .
Step 6.5.3
Factor out of .
Step 6.6
Cancel the common factors.
Step 6.6.1
Factor out of .
Step 6.6.2
Cancel the common factor.
Step 6.6.3
Rewrite the expression.
Step 7
Set equal to the integral of .
Step 8
Step 8.1
Move out of the denominator by raising it to the power.
Step 8.2
Multiply the exponents in .
Step 8.2.1
Apply the power rule and multiply exponents, .
Step 8.2.2
Multiply by .
Step 8.3
Expand .
Step 8.3.1
Apply the distributive property.
Step 8.3.2
Use the power rule to combine exponents.
Step 8.3.3
Subtract from .
Step 8.3.4
Simplify.
Step 8.3.5
Reorder and .
Step 8.4
Split the single integral into multiple integrals.
Step 8.5
Since is constant with respect to , move out of the integral.
Step 8.6
By the Power Rule, the integral of with respect to is .
Step 8.7
By the Power Rule, the integral of with respect to is .
Step 8.8
Simplify.
Step 9
Since the integral of will contain an integration constant, we can replace with .
Step 10
Set .
Step 11
Step 11.1
Differentiate with respect to .
Step 11.2
Rewrite the expression using the negative exponent rule .
Step 11.3
By the Sum Rule, the derivative of with respect to is .
Step 11.4
Evaluate .
Step 11.4.1
Combine and .
Step 11.4.2
Since is constant with respect to , the derivative of with respect to is .
Step 11.4.3
Differentiate using the Power Rule which states that is where .
Step 11.4.4
Multiply by .
Step 11.4.5
Combine and .
Step 11.4.6
Combine and .
Step 11.4.7
Move the negative in front of the fraction.
Step 11.5
Since is constant with respect to , the derivative of with respect to is .
Step 11.6
Differentiate using the function rule which states that the derivative of is .
Step 11.7
Simplify.
Step 11.7.1
Add and .
Step 11.7.2
Reorder terms.
Step 12
Step 12.1
Solve for .
Step 12.1.1
Move all terms containing variables to the left side of the equation.
Step 12.1.1.1
Subtract from both sides of the equation.
Step 12.1.1.2
Combine the numerators over the common denominator.
Step 12.1.1.3
Simplify each term.
Step 12.1.1.3.1
Apply the distributive property.
Step 12.1.1.3.2
Multiply by .
Step 12.1.1.4
Combine the opposite terms in .
Step 12.1.1.4.1
Add and .
Step 12.1.1.4.2
Add and .
Step 12.1.1.5
Cancel the common factor of .
Step 12.1.1.5.1
Cancel the common factor.
Step 12.1.1.5.2
Divide by .
Step 12.1.2
Add to both sides of the equation.
Step 13
Step 13.1
Integrate both sides of .
Step 13.2
Evaluate .
Step 13.3
Apply the constant rule.
Step 14
Substitute for in .
Step 15
Step 15.1
Rewrite the expression using the negative exponent rule .
Step 15.2
Combine and .
Step 15.3
Combine and .