Enter a problem...
Calculus Examples
,
Step 1
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Apply the constant rule.
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Let . Then . Rewrite using and .
Step 2.3.2.1
Let . Find .
Step 2.3.2.1.1
Differentiate .
Step 2.3.2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.2.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2.1.4
Differentiate using the Power Rule which states that is where .
Step 2.3.2.1.5
Add and .
Step 2.3.2.2
Rewrite the problem using and .
Step 2.3.3
Apply basic rules of exponents.
Step 2.3.3.1
Move out of the denominator by raising it to the power.
Step 2.3.3.2
Multiply the exponents in .
Step 2.3.3.2.1
Apply the power rule and multiply exponents, .
Step 2.3.3.2.2
Multiply by .
Step 2.3.4
By the Power Rule, the integral of with respect to is .
Step 2.3.5
Simplify.
Step 2.3.5.1
Rewrite as .
Step 2.3.5.2
Simplify.
Step 2.3.5.2.1
Multiply by .
Step 2.3.5.2.2
Combine and .
Step 2.3.5.2.3
Move the negative in front of the fraction.
Step 2.3.6
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Use the initial condition to find the value of by substituting for and for in .
Step 4
Step 4.1
Rewrite the equation as .
Step 4.2
Add and .
Step 4.3
Move all terms not containing to the right side of the equation.
Step 4.3.1
Add to both sides of the equation.
Step 4.3.2
To write as a fraction with a common denominator, multiply by .
Step 4.3.3
Combine and .
Step 4.3.4
Combine the numerators over the common denominator.
Step 4.3.5
Simplify the numerator.
Step 4.3.5.1
Multiply by .
Step 4.3.5.2
Add and .
Step 5
Step 5.1
Substitute for .
Step 5.2
To write as a fraction with a common denominator, multiply by .
Step 5.3
To write as a fraction with a common denominator, multiply by .
Step 5.4
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 5.4.1
Multiply by .
Step 5.4.2
Multiply by .
Step 5.4.3
Reorder the factors of .
Step 5.5
Combine the numerators over the common denominator.
Step 5.6
Simplify the numerator.
Step 5.6.1
Multiply by .
Step 5.6.2
Apply the distributive property.
Step 5.6.3
Multiply by .
Step 5.6.4
Add and .