Enter a problem...
Calculus Examples
Step 1
Rewrite the equation.
Step 2
Multiply both sides by .
Step 3
Step 3.1
Cancel the common factor of .
Step 3.1.1
Factor out of .
Step 3.1.2
Factor out of .
Step 3.1.3
Cancel the common factor.
Step 3.1.4
Rewrite the expression.
Step 3.2
Combine and .
Step 3.3
Move to the denominator using the negative exponent rule .
Step 3.4
Multiply by by adding the exponents.
Step 3.4.1
Multiply by .
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Use the power rule to combine exponents.
Step 3.4.2
Write as a fraction with a common denominator.
Step 3.4.3
Combine the numerators over the common denominator.
Step 3.4.4
Subtract from .
Step 3.5
Cancel the common factor of .
Step 3.5.1
Factor out of .
Step 3.5.2
Factor out of .
Step 3.5.3
Cancel the common factor.
Step 3.5.4
Rewrite the expression.
Step 3.6
Combine and .
Step 4
Step 4.1
Set up an integral on each side.
Step 4.2
Integrate the left side.
Step 4.2.1
Apply basic rules of exponents.
Step 4.2.1.1
Move out of the denominator by raising it to the power.
Step 4.2.1.2
Multiply the exponents in .
Step 4.2.1.2.1
Apply the power rule and multiply exponents, .
Step 4.2.1.2.2
Combine and .
Step 4.2.1.2.3
Move the negative in front of the fraction.
Step 4.2.2
By the Power Rule, the integral of with respect to is .
Step 4.3
Integrate the right side.
Step 4.3.1
Reorder and .
Step 4.3.2
Divide by .
Step 4.3.2.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
+ | + | + | + | + | + |
Step 4.3.2.2
Divide the highest order term in the dividend by the highest order term in divisor .
+ | + | + | + | + | + |
Step 4.3.2.3
Multiply the new quotient term by the divisor.
+ | + | + | + | + | + | ||||||||||
+ | + | + |
Step 4.3.2.4
The expression needs to be subtracted from the dividend, so change all the signs in
+ | + | + | + | + | + | ||||||||||
- | - | - |
Step 4.3.2.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | + | + | + | + | + | ||||||||||
- | - | - | |||||||||||||
- |
Step 4.3.2.6
Pull the next term from the original dividend down into the current dividend.
+ | + | + | + | + | + | ||||||||||
- | - | - | |||||||||||||
- | + | + |
Step 4.3.2.7
Divide the highest order term in the dividend by the highest order term in divisor .
+ | - | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
- | - | - | |||||||||||||
- | + | + |
Step 4.3.2.8
Multiply the new quotient term by the divisor.
+ | - | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
- | - | - | |||||||||||||
- | + | + | |||||||||||||
- | + | - |
Step 4.3.2.9
The expression needs to be subtracted from the dividend, so change all the signs in
+ | - | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
- | - | - | |||||||||||||
- | + | + | |||||||||||||
+ | - | + |
Step 4.3.2.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+ | - | ||||||||||||||
+ | + | + | + | + | + | ||||||||||
- | - | - | |||||||||||||
- | + | + | |||||||||||||
+ | - | + | |||||||||||||
+ |
Step 4.3.2.11
The final answer is the quotient plus the remainder over the divisor.
Step 4.3.3
Split the single integral into multiple integrals.
Step 4.3.4
By the Power Rule, the integral of with respect to is .
Step 4.3.5
Apply the constant rule.
Step 4.3.6
Simplify the expression.
Step 4.3.6.1
Reorder and .
Step 4.3.6.2
Rewrite as .
Step 4.3.7
The integral of with respect to is .
Step 4.3.8
Simplify.
Step 4.4
Group the constant of integration on the right side as .
Step 5
Step 5.1
Divide each term in by and simplify.
Step 5.1.1
Divide each term in by .
Step 5.1.2
Simplify the left side.
Step 5.1.2.1
Cancel the common factor.
Step 5.1.2.2
Divide by .
Step 5.1.3
Simplify the right side.
Step 5.1.3.1
Simplify each term.
Step 5.1.3.1.1
Combine and .
Step 5.1.3.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 5.1.3.1.3
Combine.
Step 5.1.3.1.4
Multiply by .
Step 5.1.3.1.5
Multiply by .
Step 5.1.3.1.6
Move the negative in front of the fraction.
Step 5.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 5.3
Simplify the exponent.
Step 5.3.1
Simplify the left side.
Step 5.3.1.1
Simplify .
Step 5.3.1.1.1
Multiply the exponents in .
Step 5.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 5.3.1.1.1.2
Cancel the common factor of .
Step 5.3.1.1.1.2.1
Cancel the common factor.
Step 5.3.1.1.1.2.2
Rewrite the expression.
Step 5.3.1.1.2
Simplify.
Step 5.3.2
Simplify the right side.
Step 5.3.2.1
Simplify .
Step 5.3.2.1.1
Rewrite as .
Step 5.3.2.1.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.3.2.1.3
Simplify terms.
Step 5.3.2.1.3.1
Simplify each term.
Step 5.3.2.1.3.1.1
Combine.
Step 5.3.2.1.3.1.2
Multiply by by adding the exponents.
Step 5.3.2.1.3.1.2.1
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.2.2
Add and .
Step 5.3.2.1.3.1.3
Multiply by .
Step 5.3.2.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 5.3.2.1.3.1.5
Multiply .
Step 5.3.2.1.3.1.5.1
Multiply by .
Step 5.3.2.1.3.1.5.2
Multiply by by adding the exponents.
Step 5.3.2.1.3.1.5.2.1
Multiply by .
Step 5.3.2.1.3.1.5.2.1.1
Raise to the power of .
Step 5.3.2.1.3.1.5.2.1.2
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.5.2.2
Add and .
Step 5.3.2.1.3.1.5.3
Multiply by .
Step 5.3.2.1.3.1.6
Combine.
Step 5.3.2.1.3.1.7
Multiply by .
Step 5.3.2.1.3.1.8
Combine.
Step 5.3.2.1.3.1.9
Multiply by .
Step 5.3.2.1.3.1.10
Multiply .
Step 5.3.2.1.3.1.10.1
Multiply by .
Step 5.3.2.1.3.1.10.2
Multiply by by adding the exponents.
Step 5.3.2.1.3.1.10.2.1
Multiply by .
Step 5.3.2.1.3.1.10.2.1.1
Raise to the power of .
Step 5.3.2.1.3.1.10.2.1.2
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.10.2.2
Add and .
Step 5.3.2.1.3.1.10.3
Multiply by .
Step 5.3.2.1.3.1.11
Multiply .
Step 5.3.2.1.3.1.11.1
Multiply by .
Step 5.3.2.1.3.1.11.2
Multiply by .
Step 5.3.2.1.3.1.11.3
Multiply by .
Step 5.3.2.1.3.1.11.4
Raise to the power of .
Step 5.3.2.1.3.1.11.5
Raise to the power of .
Step 5.3.2.1.3.1.11.6
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.11.7
Add and .
Step 5.3.2.1.3.1.11.8
Multiply by .
Step 5.3.2.1.3.1.12
Multiply .
Step 5.3.2.1.3.1.12.1
Multiply by .
Step 5.3.2.1.3.1.12.2
Multiply by .
Step 5.3.2.1.3.1.13
Multiply .
Step 5.3.2.1.3.1.13.1
Multiply by .
Step 5.3.2.1.3.1.13.2
Multiply by .
Step 5.3.2.1.3.1.14
Combine.
Step 5.3.2.1.3.1.15
Multiply by .
Step 5.3.2.1.3.1.16
Rewrite using the commutative property of multiplication.
Step 5.3.2.1.3.1.17
Multiply .
Step 5.3.2.1.3.1.17.1
Multiply by .
Step 5.3.2.1.3.1.17.2
Multiply by .
Step 5.3.2.1.3.1.18
Multiply .
Step 5.3.2.1.3.1.18.1
Multiply by .
Step 5.3.2.1.3.1.18.2
Raise to the power of .
Step 5.3.2.1.3.1.18.3
Raise to the power of .
Step 5.3.2.1.3.1.18.4
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.18.5
Add and .
Step 5.3.2.1.3.1.18.6
Multiply by .
Step 5.3.2.1.3.1.19
Multiply .
Step 5.3.2.1.3.1.19.1
Multiply by .
Step 5.3.2.1.3.1.19.2
Multiply by .
Step 5.3.2.1.3.1.20
Combine.
Step 5.3.2.1.3.1.21
Multiply by .
Step 5.3.2.1.3.1.22
Rewrite using the commutative property of multiplication.
Step 5.3.2.1.3.1.23
Multiply .
Step 5.3.2.1.3.1.23.1
Multiply by .
Step 5.3.2.1.3.1.23.2
Multiply by .
Step 5.3.2.1.3.1.24
Multiply .
Step 5.3.2.1.3.1.24.1
Multiply by .
Step 5.3.2.1.3.1.24.2
Multiply by .
Step 5.3.2.1.3.1.25
Multiply .
Step 5.3.2.1.3.1.25.1
Multiply by .
Step 5.3.2.1.3.1.25.2
Raise to the power of .
Step 5.3.2.1.3.1.25.3
Raise to the power of .
Step 5.3.2.1.3.1.25.4
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.25.5
Add and .
Step 5.3.2.1.3.1.25.6
Multiply by .
Step 5.3.2.1.3.2
Simplify terms.
Step 5.3.2.1.3.2.1
Combine the numerators over the common denominator.
Step 5.3.2.1.3.2.2
Subtract from .
Step 5.3.2.1.4
Add and .
Step 5.3.2.1.4.1
Reorder and .
Step 5.3.2.1.4.2
Add and .
Step 5.3.2.1.5
Add and .
Step 5.3.2.1.5.1
Reorder and .
Step 5.3.2.1.5.2
Add and .
Step 5.3.2.1.6
Subtract from .
Step 5.3.2.1.6.1
Move .
Step 5.3.2.1.6.2
Subtract from .
Step 5.3.2.1.7
Subtract from .
Step 5.3.2.1.7.1
Move .
Step 5.3.2.1.7.2
Subtract from .
Step 5.3.2.1.8
Add and .
Step 5.3.2.1.8.1
Reorder and .
Step 5.3.2.1.8.2
Add and .
Step 5.3.2.1.9
Simplify each term.
Step 5.3.2.1.9.1
Factor out of .
Step 5.3.2.1.9.1.1
Factor out of .
Step 5.3.2.1.9.1.2
Factor out of .
Step 5.3.2.1.9.1.3
Factor out of .
Step 5.3.2.1.9.1.4
Factor out of .
Step 5.3.2.1.9.1.5
Factor out of .
Step 5.3.2.1.9.2
Cancel the common factor of and .
Step 5.3.2.1.9.2.1
Factor out of .
Step 5.3.2.1.9.2.2
Cancel the common factors.
Step 5.3.2.1.9.2.2.1
Factor out of .
Step 5.3.2.1.9.2.2.2
Cancel the common factor.
Step 5.3.2.1.9.2.2.3
Rewrite the expression.
Step 5.3.2.1.9.3
Split the fraction into two fractions.
Step 5.3.2.1.9.4
Simplify each term.
Step 5.3.2.1.9.4.1
Split the fraction into two fractions.
Step 5.3.2.1.9.4.2
Simplify each term.
Step 5.3.2.1.9.4.2.1
Split the fraction into two fractions.
Step 5.3.2.1.9.4.2.2
Simplify each term.
Step 5.3.2.1.9.4.2.2.1
Factor using the perfect square rule.
Step 5.3.2.1.9.4.2.2.1.1
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3.2.1.9.4.2.2.1.2
Rewrite the polynomial.
Step 5.3.2.1.9.4.2.2.1.3
Factor using the perfect square trinomial rule , where and .
Step 5.3.2.1.9.4.2.2.2
Cancel the common factor of and .
Step 5.3.2.1.9.4.2.2.2.1
Factor out of .
Step 5.3.2.1.9.4.2.2.2.2
Cancel the common factors.
Step 5.3.2.1.9.4.2.2.2.2.1
Factor out of .
Step 5.3.2.1.9.4.2.2.2.2.2
Cancel the common factor.
Step 5.3.2.1.9.4.2.2.2.2.3
Rewrite the expression.
Step 5.3.2.1.9.4.2.3
Cancel the common factor of and .
Step 5.3.2.1.9.4.2.3.1
Factor out of .
Step 5.3.2.1.9.4.2.3.2
Cancel the common factors.
Step 5.3.2.1.9.4.2.3.2.1
Factor out of .
Step 5.3.2.1.9.4.2.3.2.2
Cancel the common factor.
Step 5.3.2.1.9.4.2.3.2.3
Rewrite the expression.
Step 5.3.2.1.9.4.2.4
Move the negative in front of the fraction.
Step 5.4
Simplify .
Step 5.4.1
Move .
Step 5.4.2
Move .
Step 5.4.3
Move .
Step 5.4.4
Move .
Step 6
Simplify the constant of integration.