Calculus Examples

Solve the Differential Equation yx^4dx=(1+x^2)y^(1/2)dy
Step 1
Rewrite the equation.
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.1
Factor out of .
Step 3.1.2
Factor out of .
Step 3.1.3
Cancel the common factor.
Step 3.1.4
Rewrite the expression.
Step 3.2
Combine and .
Step 3.3
Move to the denominator using the negative exponent rule .
Step 3.4
Multiply by by adding the exponents.
Tap for more steps...
Step 3.4.1
Multiply by .
Tap for more steps...
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Use the power rule to combine exponents.
Step 3.4.2
Write as a fraction with a common denominator.
Step 3.4.3
Combine the numerators over the common denominator.
Step 3.4.4
Subtract from .
Step 3.5
Cancel the common factor of .
Tap for more steps...
Step 3.5.1
Factor out of .
Step 3.5.2
Factor out of .
Step 3.5.3
Cancel the common factor.
Step 3.5.4
Rewrite the expression.
Step 3.6
Combine and .
Step 4
Integrate both sides.
Tap for more steps...
Step 4.1
Set up an integral on each side.
Step 4.2
Integrate the left side.
Tap for more steps...
Step 4.2.1
Apply basic rules of exponents.
Tap for more steps...
Step 4.2.1.1
Move out of the denominator by raising it to the power.
Step 4.2.1.2
Multiply the exponents in .
Tap for more steps...
Step 4.2.1.2.1
Apply the power rule and multiply exponents, .
Step 4.2.1.2.2
Combine and .
Step 4.2.1.2.3
Move the negative in front of the fraction.
Step 4.2.2
By the Power Rule, the integral of with respect to is .
Step 4.3
Integrate the right side.
Tap for more steps...
Step 4.3.1
Reorder and .
Step 4.3.2
Divide by .
Tap for more steps...
Step 4.3.2.1
Set up the polynomials to be divided. If there is not a term for every exponent, insert one with a value of .
++++++
Step 4.3.2.2
Divide the highest order term in the dividend by the highest order term in divisor .
++++++
Step 4.3.2.3
Multiply the new quotient term by the divisor.
++++++
+++
Step 4.3.2.4
The expression needs to be subtracted from the dividend, so change all the signs in
++++++
---
Step 4.3.2.5
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
++++++
---
-
Step 4.3.2.6
Pull the next term from the original dividend down into the current dividend.
++++++
---
-++
Step 4.3.2.7
Divide the highest order term in the dividend by the highest order term in divisor .
+-
++++++
---
-++
Step 4.3.2.8
Multiply the new quotient term by the divisor.
+-
++++++
---
-++
-+-
Step 4.3.2.9
The expression needs to be subtracted from the dividend, so change all the signs in
+-
++++++
---
-++
+-+
Step 4.3.2.10
After changing the signs, add the last dividend from the multiplied polynomial to find the new dividend.
+-
++++++
---
-++
+-+
+
Step 4.3.2.11
The final answer is the quotient plus the remainder over the divisor.
Step 4.3.3
Split the single integral into multiple integrals.
Step 4.3.4
By the Power Rule, the integral of with respect to is .
Step 4.3.5
Apply the constant rule.
Step 4.3.6
Simplify the expression.
Tap for more steps...
Step 4.3.6.1
Reorder and .
Step 4.3.6.2
Rewrite as .
Step 4.3.7
The integral of with respect to is .
Step 4.3.8
Simplify.
Step 4.4
Group the constant of integration on the right side as .
Step 5
Solve for .
Tap for more steps...
Step 5.1
Divide each term in by and simplify.
Tap for more steps...
Step 5.1.1
Divide each term in by .
Step 5.1.2
Simplify the left side.
Tap for more steps...
Step 5.1.2.1
Cancel the common factor.
Step 5.1.2.2
Divide by .
Step 5.1.3
Simplify the right side.
Tap for more steps...
Step 5.1.3.1
Simplify each term.
Tap for more steps...
Step 5.1.3.1.1
Combine and .
Step 5.1.3.1.2
Multiply the numerator by the reciprocal of the denominator.
Step 5.1.3.1.3
Combine.
Step 5.1.3.1.4
Multiply by .
Step 5.1.3.1.5
Multiply by .
Step 5.1.3.1.6
Move the negative in front of the fraction.
Step 5.2
Raise each side of the equation to the power of to eliminate the fractional exponent on the left side.
Step 5.3
Simplify the exponent.
Tap for more steps...
Step 5.3.1
Simplify the left side.
Tap for more steps...
Step 5.3.1.1
Simplify .
Tap for more steps...
Step 5.3.1.1.1
Multiply the exponents in .
Tap for more steps...
Step 5.3.1.1.1.1
Apply the power rule and multiply exponents, .
Step 5.3.1.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 5.3.1.1.1.2.1
Cancel the common factor.
Step 5.3.1.1.1.2.2
Rewrite the expression.
Step 5.3.1.1.2
Simplify.
Step 5.3.2
Simplify the right side.
Tap for more steps...
Step 5.3.2.1
Simplify .
Tap for more steps...
Step 5.3.2.1.1
Rewrite as .
Step 5.3.2.1.2
Expand by multiplying each term in the first expression by each term in the second expression.
Step 5.3.2.1.3
Simplify terms.
Tap for more steps...
Step 5.3.2.1.3.1
Simplify each term.
Tap for more steps...
Step 5.3.2.1.3.1.1
Combine.
Step 5.3.2.1.3.1.2
Multiply by by adding the exponents.
Tap for more steps...
Step 5.3.2.1.3.1.2.1
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.2.2
Add and .
Step 5.3.2.1.3.1.3
Multiply by .
Step 5.3.2.1.3.1.4
Rewrite using the commutative property of multiplication.
Step 5.3.2.1.3.1.5
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.5.1
Multiply by .
Step 5.3.2.1.3.1.5.2
Multiply by by adding the exponents.
Tap for more steps...
Step 5.3.2.1.3.1.5.2.1
Multiply by .
Tap for more steps...
Step 5.3.2.1.3.1.5.2.1.1
Raise to the power of .
Step 5.3.2.1.3.1.5.2.1.2
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.5.2.2
Add and .
Step 5.3.2.1.3.1.5.3
Multiply by .
Step 5.3.2.1.3.1.6
Combine.
Step 5.3.2.1.3.1.7
Multiply by .
Step 5.3.2.1.3.1.8
Combine.
Step 5.3.2.1.3.1.9
Multiply by .
Step 5.3.2.1.3.1.10
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.10.1
Multiply by .
Step 5.3.2.1.3.1.10.2
Multiply by by adding the exponents.
Tap for more steps...
Step 5.3.2.1.3.1.10.2.1
Multiply by .
Tap for more steps...
Step 5.3.2.1.3.1.10.2.1.1
Raise to the power of .
Step 5.3.2.1.3.1.10.2.1.2
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.10.2.2
Add and .
Step 5.3.2.1.3.1.10.3
Multiply by .
Step 5.3.2.1.3.1.11
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.11.1
Multiply by .
Step 5.3.2.1.3.1.11.2
Multiply by .
Step 5.3.2.1.3.1.11.3
Multiply by .
Step 5.3.2.1.3.1.11.4
Raise to the power of .
Step 5.3.2.1.3.1.11.5
Raise to the power of .
Step 5.3.2.1.3.1.11.6
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.11.7
Add and .
Step 5.3.2.1.3.1.11.8
Multiply by .
Step 5.3.2.1.3.1.12
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.12.1
Multiply by .
Step 5.3.2.1.3.1.12.2
Multiply by .
Step 5.3.2.1.3.1.13
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.13.1
Multiply by .
Step 5.3.2.1.3.1.13.2
Multiply by .
Step 5.3.2.1.3.1.14
Combine.
Step 5.3.2.1.3.1.15
Multiply by .
Step 5.3.2.1.3.1.16
Rewrite using the commutative property of multiplication.
Step 5.3.2.1.3.1.17
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.17.1
Multiply by .
Step 5.3.2.1.3.1.17.2
Multiply by .
Step 5.3.2.1.3.1.18
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.18.1
Multiply by .
Step 5.3.2.1.3.1.18.2
Raise to the power of .
Step 5.3.2.1.3.1.18.3
Raise to the power of .
Step 5.3.2.1.3.1.18.4
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.18.5
Add and .
Step 5.3.2.1.3.1.18.6
Multiply by .
Step 5.3.2.1.3.1.19
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.19.1
Multiply by .
Step 5.3.2.1.3.1.19.2
Multiply by .
Step 5.3.2.1.3.1.20
Combine.
Step 5.3.2.1.3.1.21
Multiply by .
Step 5.3.2.1.3.1.22
Rewrite using the commutative property of multiplication.
Step 5.3.2.1.3.1.23
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.23.1
Multiply by .
Step 5.3.2.1.3.1.23.2
Multiply by .
Step 5.3.2.1.3.1.24
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.24.1
Multiply by .
Step 5.3.2.1.3.1.24.2
Multiply by .
Step 5.3.2.1.3.1.25
Multiply .
Tap for more steps...
Step 5.3.2.1.3.1.25.1
Multiply by .
Step 5.3.2.1.3.1.25.2
Raise to the power of .
Step 5.3.2.1.3.1.25.3
Raise to the power of .
Step 5.3.2.1.3.1.25.4
Use the power rule to combine exponents.
Step 5.3.2.1.3.1.25.5
Add and .
Step 5.3.2.1.3.1.25.6
Multiply by .
Step 5.3.2.1.3.2
Simplify terms.
Tap for more steps...
Step 5.3.2.1.3.2.1
Combine the numerators over the common denominator.
Step 5.3.2.1.3.2.2
Subtract from .
Step 5.3.2.1.4
Add and .
Tap for more steps...
Step 5.3.2.1.4.1
Reorder and .
Step 5.3.2.1.4.2
Add and .
Step 5.3.2.1.5
Add and .
Tap for more steps...
Step 5.3.2.1.5.1
Reorder and .
Step 5.3.2.1.5.2
Add and .
Step 5.3.2.1.6
Subtract from .
Tap for more steps...
Step 5.3.2.1.6.1
Move .
Step 5.3.2.1.6.2
Subtract from .
Step 5.3.2.1.7
Subtract from .
Tap for more steps...
Step 5.3.2.1.7.1
Move .
Step 5.3.2.1.7.2
Subtract from .
Step 5.3.2.1.8
Add and .
Tap for more steps...
Step 5.3.2.1.8.1
Reorder and .
Step 5.3.2.1.8.2
Add and .
Step 5.3.2.1.9
Simplify each term.
Tap for more steps...
Step 5.3.2.1.9.1
Factor out of .
Tap for more steps...
Step 5.3.2.1.9.1.1
Factor out of .
Step 5.3.2.1.9.1.2
Factor out of .
Step 5.3.2.1.9.1.3
Factor out of .
Step 5.3.2.1.9.1.4
Factor out of .
Step 5.3.2.1.9.1.5
Factor out of .
Step 5.3.2.1.9.2
Cancel the common factor of and .
Tap for more steps...
Step 5.3.2.1.9.2.1
Factor out of .
Step 5.3.2.1.9.2.2
Cancel the common factors.
Tap for more steps...
Step 5.3.2.1.9.2.2.1
Factor out of .
Step 5.3.2.1.9.2.2.2
Cancel the common factor.
Step 5.3.2.1.9.2.2.3
Rewrite the expression.
Step 5.3.2.1.9.3
Split the fraction into two fractions.
Step 5.3.2.1.9.4
Simplify each term.
Tap for more steps...
Step 5.3.2.1.9.4.1
Split the fraction into two fractions.
Step 5.3.2.1.9.4.2
Simplify each term.
Tap for more steps...
Step 5.3.2.1.9.4.2.1
Split the fraction into two fractions.
Step 5.3.2.1.9.4.2.2
Simplify each term.
Tap for more steps...
Step 5.3.2.1.9.4.2.2.1
Factor using the perfect square rule.
Tap for more steps...
Step 5.3.2.1.9.4.2.2.1.1
Check that the middle term is two times the product of the numbers being squared in the first term and third term.
Step 5.3.2.1.9.4.2.2.1.2
Rewrite the polynomial.
Step 5.3.2.1.9.4.2.2.1.3
Factor using the perfect square trinomial rule , where and .
Step 5.3.2.1.9.4.2.2.2
Cancel the common factor of and .
Tap for more steps...
Step 5.3.2.1.9.4.2.2.2.1
Factor out of .
Step 5.3.2.1.9.4.2.2.2.2
Cancel the common factors.
Tap for more steps...
Step 5.3.2.1.9.4.2.2.2.2.1
Factor out of .
Step 5.3.2.1.9.4.2.2.2.2.2
Cancel the common factor.
Step 5.3.2.1.9.4.2.2.2.2.3
Rewrite the expression.
Step 5.3.2.1.9.4.2.3
Cancel the common factor of and .
Tap for more steps...
Step 5.3.2.1.9.4.2.3.1
Factor out of .
Step 5.3.2.1.9.4.2.3.2
Cancel the common factors.
Tap for more steps...
Step 5.3.2.1.9.4.2.3.2.1
Factor out of .
Step 5.3.2.1.9.4.2.3.2.2
Cancel the common factor.
Step 5.3.2.1.9.4.2.3.2.3
Rewrite the expression.
Step 5.3.2.1.9.4.2.4
Move the negative in front of the fraction.
Step 5.4
Simplify .
Tap for more steps...
Step 5.4.1
Move .
Step 5.4.2
Move .
Step 5.4.3
Move .
Step 5.4.4
Move .
Step 6
Simplify the constant of integration.