Enter a problem...
Calculus Examples
dydx+y=xy2
Step 1
To solve the differential equation, let v=y1-n where n is the exponent of y2.
v=y-1
Step 2
Solve the equation for y.
y=v-1
Step 3
Take the derivative of y with respect to x.
y′=v-1
Step 4
Step 4.1
Take the derivative of v-1.
y′=ddx[v-1]
Step 4.2
Rewrite the expression using the negative exponent rule b-n=1bn.
y′=ddx[1v]
Step 4.3
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=1 and g(x)=v.
y′=vddx[1]-1⋅1ddx[v]v2
Step 4.4
Differentiate using the Constant Rule.
Step 4.4.1
Multiply -1 by 1.
y′=vddx[1]-ddx[v]v2
Step 4.4.2
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
y′=v⋅0-ddx[v]v2
Step 4.4.3
Simplify the expression.
Step 4.4.3.1
Multiply v by 0.
y′=0-ddx[v]v2
Step 4.4.3.2
Subtract ddx[v] from 0.
y′=-ddx[v]v2
Step 4.4.3.3
Move the negative in front of the fraction.
y′=-ddx[v]v2
y′=-ddx[v]v2
y′=-ddx[v]v2
Step 4.5
Rewrite ddx[v] as v′.
y′=-v′v2
y′=-v′v2
Step 5
Substitute -v′v2 for dydx and v-1 for y in the original equation dydx+y=xy2.
-v′v2+v-1=x(v-1)2
Step 6
Step 6.1
Multiply each term in -dvdxv2+v-1=x(v-1)2 by -v2 to eliminate the fractions.
Step 6.1.1
Multiply each term in -dvdxv2+v-1=x(v-1)2 by -v2.
-dvdxv2(-v2)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2
Simplify the left side.
Step 6.1.2.1
Simplify each term.
Step 6.1.2.1.1
Cancel the common factor of v2.
Step 6.1.2.1.1.1
Move the leading negative in -dvdxv2 into the numerator.
-dvdxv2(-v2)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.1.2
Factor v2 out of -v2.
-dvdxv2(v2⋅-1)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.1.3
Cancel the common factor.
-dvdxv2(v2⋅-1)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.1.4
Rewrite the expression.
-dvdx⋅-1+v-1(-v2)=x(v-1)2(-v2)
-dvdx⋅-1+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.2
Multiply -1 by -1.
1dvdx+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.3
Multiply dvdx by 1.
dvdx+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.4
Rewrite using the commutative property of multiplication.
dvdx-v-1v2=x(v-1)2(-v2)
Step 6.1.2.1.5
Multiply v-1 by v2 by adding the exponents.
Step 6.1.2.1.5.1
Move v2.
dvdx-(v2v-1)=x(v-1)2(-v2)
Step 6.1.2.1.5.2
Use the power rule aman=am+n to combine exponents.
dvdx-v2-1=x(v-1)2(-v2)
Step 6.1.2.1.5.3
Subtract 1 from 2.
dvdx-v1=x(v-1)2(-v2)
dvdx-v1=x(v-1)2(-v2)
Step 6.1.2.1.6
Simplify -v1.
dvdx-v=x(v-1)2(-v2)
dvdx-v=x(v-1)2(-v2)
dvdx-v=x(v-1)2(-v2)
Step 6.1.3
Simplify the right side.
Step 6.1.3.1
Rewrite using the commutative property of multiplication.
dvdx-v=-x(v-1)2v2
Step 6.1.3.2
Multiply the exponents in (v-1)2.
Step 6.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
dvdx-v=-xv-1⋅2v2
Step 6.1.3.2.2
Multiply -1 by 2.
dvdx-v=-xv-2v2
dvdx-v=-xv-2v2
Step 6.1.3.3
Multiply v-2 by v2 by adding the exponents.
Step 6.1.3.3.1
Move v2.
dvdx-v=-x(v2v-2)
Step 6.1.3.3.2
Use the power rule aman=am+n to combine exponents.
dvdx-v=-xv2-2
Step 6.1.3.3.3
Subtract 2 from 2.
dvdx-v=-xv0
dvdx-v=-xv0
Step 6.1.3.4
Simplify -xv0.
dvdx-v=-x
dvdx-v=-x
dvdx-v=-x
Step 6.2
The integrating factor is defined by the formula e∫P(x)dx, where P(x)=-1.
Step 6.2.1
Set up the integration.
e∫-1dx
Step 6.2.2
Apply the constant rule.
e-x+C
Step 6.2.3
Remove the constant of integration.
e-x
e-x
Step 6.3
Multiply each term by the integrating factor e-x.
Step 6.3.1
Multiply each term by e-x.
e-xdvdx+e-x(-v)=e-x(-x)
Step 6.3.2
Rewrite using the commutative property of multiplication.
e-xdvdx-e-xv=e-x(-x)
Step 6.3.3
Rewrite using the commutative property of multiplication.
e-xdvdx-e-xv=-e-xx
Step 6.3.4
Reorder factors in e-xdvdx-e-xv=-e-xx.
e-xdvdx-ve-x=-xe-x
e-xdvdx-ve-x=-xe-x
Step 6.4
Rewrite the left side as a result of differentiating a product.
ddx[e-xv]=-xe-x
Step 6.5
Set up an integral on each side.
∫ddx[e-xv]dx=∫-xe-xdx
Step 6.6
Integrate the left side.
e-xv=∫-xe-xdx
Step 6.7
Integrate the right side.
Step 6.7.1
Since -1 is constant with respect to x, move -1 out of the integral.
e-xv=-∫xe-xdx
Step 6.7.2
Integrate by parts using the formula ∫udv=uv-∫vdu, where u=x and dv=e-x.
e-xv=-(x(-e-x)-∫-e-xdx)
Step 6.7.3
Since -1 is constant with respect to x, move -1 out of the integral.
e-xv=-(x(-e-x)--∫e-xdx)
Step 6.7.4
Simplify.
Step 6.7.4.1
Multiply -1 by -1.
e-xv=-(x(-e-x)+1∫e-xdx)
Step 6.7.4.2
Multiply ∫e-xdx by 1.
e-xv=-(x(-e-x)+∫e-xdx)
e-xv=-(x(-e-x)+∫e-xdx)
Step 6.7.5
Let u=-x. Then du=-dx, so -du=dx. Rewrite using u and du.
Step 6.7.5.1
Let u=-x. Find dudx.
Step 6.7.5.1.1
Differentiate -x.
ddx[-x]
Step 6.7.5.1.2
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
-ddx[x]
Step 6.7.5.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-1⋅1
Step 6.7.5.1.4
Multiply -1 by 1.
-1
-1
Step 6.7.5.2
Rewrite the problem using u and du.
e-xv=-(x(-e-x)+∫-eudu)
e-xv=-(x(-e-x)+∫-eudu)
Step 6.7.6
Since -1 is constant with respect to u, move -1 out of the integral.
e-xv=-(x(-e-x)-∫eudu)
Step 6.7.7
The integral of eu with respect to u is eu.
e-xv=-(x(-e-x)-(eu+C))
Step 6.7.8
Rewrite -(x(-e-x)-(eu+C)) as -(-xe-x-eu)+C.
e-xv=-(-xe-x-eu)+C
Step 6.7.9
Replace all occurrences of u with -x.
e-xv=-(-xe-x-e-x)+C
Step 6.7.10
Simplify.
Step 6.7.10.1
Apply the distributive property.
e-xv=-(-xe-x)--e-x+C
Step 6.7.10.2
Multiply -(-xe-x).
Step 6.7.10.2.1
Multiply -1 by -1.
e-xv=1(xe-x)--e-x+C
Step 6.7.10.2.2
Multiply x by 1.
e-xv=xe-x--e-x+C
e-xv=xe-x--e-x+C
Step 6.7.10.3
Multiply --e-x.
Step 6.7.10.3.1
Multiply -1 by -1.
e-xv=xe-x+1e-x+C
Step 6.7.10.3.2
Multiply e-x by 1.
e-xv=xe-x+e-x+C
e-xv=xe-x+e-x+C
e-xv=xe-x+e-x+C
e-xv=xe-x+e-x+C
Step 6.8
Divide each term in e-xv=xe-x+e-x+C by e-x and simplify.
Step 6.8.1
Divide each term in e-xv=xe-x+e-x+C by e-x.
e-xve-x=xe-xe-x+e-xe-x+Ce-x
Step 6.8.2
Simplify the left side.
Step 6.8.2.1
Cancel the common factor of e-x.
Step 6.8.2.1.1
Cancel the common factor.
e-xve-x=xe-xe-x+e-xe-x+Ce-x
Step 6.8.2.1.2
Divide v by 1.
v=xe-xe-x+e-xe-x+Ce-x
v=xe-xe-x+e-xe-x+Ce-x
v=xe-xe-x+e-xe-x+Ce-x
Step 6.8.3
Simplify the right side.
Step 6.8.3.1
Simplify each term.
Step 6.8.3.1.1
Cancel the common factor of e-x.
Step 6.8.3.1.1.1
Cancel the common factor.
v=xe-xe-x+e-xe-x+Ce-x
Step 6.8.3.1.1.2
Divide x by 1.
v=x+e-xe-x+Ce-x
v=x+e-xe-x+Ce-x
Step 6.8.3.1.2
Cancel the common factor of e-x.
Step 6.8.3.1.2.1
Cancel the common factor.
v=x+e-xe-x+Ce-x
Step 6.8.3.1.2.2
Rewrite the expression.
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
Step 7
Substitute y-1 for v.
y-1=x+1+Ce-x