Calculus Examples

Solve the Differential Equation (dy)/(dx)+y=xy^2
dydx+y=xy2
Step 1
To solve the differential equation, let v=y1-n where n is the exponent of y2.
v=y-1
Step 2
Solve the equation for y.
y=v-1
Step 3
Take the derivative of y with respect to x.
y=v-1
Step 4
Take the derivative of v-1 with respect to x.
Tap for more steps...
Step 4.1
Take the derivative of v-1.
y=ddx[v-1]
Step 4.2
Rewrite the expression using the negative exponent rule b-n=1bn.
y=ddx[1v]
Step 4.3
Differentiate using the Quotient Rule which states that ddx[f(x)g(x)] is g(x)ddx[f(x)]-f(x)ddx[g(x)]g(x)2 where f(x)=1 and g(x)=v.
y=vddx[1]-11ddx[v]v2
Step 4.4
Differentiate using the Constant Rule.
Tap for more steps...
Step 4.4.1
Multiply -1 by 1.
y=vddx[1]-ddx[v]v2
Step 4.4.2
Since 1 is constant with respect to x, the derivative of 1 with respect to x is 0.
y=v0-ddx[v]v2
Step 4.4.3
Simplify the expression.
Tap for more steps...
Step 4.4.3.1
Multiply v by 0.
y=0-ddx[v]v2
Step 4.4.3.2
Subtract ddx[v] from 0.
y=-ddx[v]v2
Step 4.4.3.3
Move the negative in front of the fraction.
y=-ddx[v]v2
y=-ddx[v]v2
y=-ddx[v]v2
Step 4.5
Rewrite ddx[v] as v.
y=-vv2
y=-vv2
Step 5
Substitute -vv2 for dydx and v-1 for y in the original equation dydx+y=xy2.
-vv2+v-1=x(v-1)2
Step 6
Solve the substituted differential equation.
Tap for more steps...
Step 6.1
Multiply each term in -dvdxv2+v-1=x(v-1)2 by -v2 to eliminate the fractions.
Tap for more steps...
Step 6.1.1
Multiply each term in -dvdxv2+v-1=x(v-1)2 by -v2.
-dvdxv2(-v2)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2
Simplify the left side.
Tap for more steps...
Step 6.1.2.1
Simplify each term.
Tap for more steps...
Step 6.1.2.1.1
Cancel the common factor of v2.
Tap for more steps...
Step 6.1.2.1.1.1
Move the leading negative in -dvdxv2 into the numerator.
-dvdxv2(-v2)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.1.2
Factor v2 out of -v2.
-dvdxv2(v2-1)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.1.3
Cancel the common factor.
-dvdxv2(v2-1)+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.1.4
Rewrite the expression.
-dvdx-1+v-1(-v2)=x(v-1)2(-v2)
-dvdx-1+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.2
Multiply -1 by -1.
1dvdx+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.3
Multiply dvdx by 1.
dvdx+v-1(-v2)=x(v-1)2(-v2)
Step 6.1.2.1.4
Rewrite using the commutative property of multiplication.
dvdx-v-1v2=x(v-1)2(-v2)
Step 6.1.2.1.5
Multiply v-1 by v2 by adding the exponents.
Tap for more steps...
Step 6.1.2.1.5.1
Move v2.
dvdx-(v2v-1)=x(v-1)2(-v2)
Step 6.1.2.1.5.2
Use the power rule aman=am+n to combine exponents.
dvdx-v2-1=x(v-1)2(-v2)
Step 6.1.2.1.5.3
Subtract 1 from 2.
dvdx-v1=x(v-1)2(-v2)
dvdx-v1=x(v-1)2(-v2)
Step 6.1.2.1.6
Simplify -v1.
dvdx-v=x(v-1)2(-v2)
dvdx-v=x(v-1)2(-v2)
dvdx-v=x(v-1)2(-v2)
Step 6.1.3
Simplify the right side.
Tap for more steps...
Step 6.1.3.1
Rewrite using the commutative property of multiplication.
dvdx-v=-x(v-1)2v2
Step 6.1.3.2
Multiply the exponents in (v-1)2.
Tap for more steps...
Step 6.1.3.2.1
Apply the power rule and multiply exponents, (am)n=amn.
dvdx-v=-xv-12v2
Step 6.1.3.2.2
Multiply -1 by 2.
dvdx-v=-xv-2v2
dvdx-v=-xv-2v2
Step 6.1.3.3
Multiply v-2 by v2 by adding the exponents.
Tap for more steps...
Step 6.1.3.3.1
Move v2.
dvdx-v=-x(v2v-2)
Step 6.1.3.3.2
Use the power rule aman=am+n to combine exponents.
dvdx-v=-xv2-2
Step 6.1.3.3.3
Subtract 2 from 2.
dvdx-v=-xv0
dvdx-v=-xv0
Step 6.1.3.4
Simplify -xv0.
dvdx-v=-x
dvdx-v=-x
dvdx-v=-x
Step 6.2
The integrating factor is defined by the formula eP(x)dx, where P(x)=-1.
Tap for more steps...
Step 6.2.1
Set up the integration.
e-1dx
Step 6.2.2
Apply the constant rule.
e-x+C
Step 6.2.3
Remove the constant of integration.
e-x
e-x
Step 6.3
Multiply each term by the integrating factor e-x.
Tap for more steps...
Step 6.3.1
Multiply each term by e-x.
e-xdvdx+e-x(-v)=e-x(-x)
Step 6.3.2
Rewrite using the commutative property of multiplication.
e-xdvdx-e-xv=e-x(-x)
Step 6.3.3
Rewrite using the commutative property of multiplication.
e-xdvdx-e-xv=-e-xx
Step 6.3.4
Reorder factors in e-xdvdx-e-xv=-e-xx.
e-xdvdx-ve-x=-xe-x
e-xdvdx-ve-x=-xe-x
Step 6.4
Rewrite the left side as a result of differentiating a product.
ddx[e-xv]=-xe-x
Step 6.5
Set up an integral on each side.
ddx[e-xv]dx=-xe-xdx
Step 6.6
Integrate the left side.
e-xv=-xe-xdx
Step 6.7
Integrate the right side.
Tap for more steps...
Step 6.7.1
Since -1 is constant with respect to x, move -1 out of the integral.
e-xv=-xe-xdx
Step 6.7.2
Integrate by parts using the formula udv=uv-vdu, where u=x and dv=e-x.
e-xv=-(x(-e-x)--e-xdx)
Step 6.7.3
Since -1 is constant with respect to x, move -1 out of the integral.
e-xv=-(x(-e-x)--e-xdx)
Step 6.7.4
Simplify.
Tap for more steps...
Step 6.7.4.1
Multiply -1 by -1.
e-xv=-(x(-e-x)+1e-xdx)
Step 6.7.4.2
Multiply e-xdx by 1.
e-xv=-(x(-e-x)+e-xdx)
e-xv=-(x(-e-x)+e-xdx)
Step 6.7.5
Let u=-x. Then du=-dx, so -du=dx. Rewrite using u and du.
Tap for more steps...
Step 6.7.5.1
Let u=-x. Find dudx.
Tap for more steps...
Step 6.7.5.1.1
Differentiate -x.
ddx[-x]
Step 6.7.5.1.2
Since -1 is constant with respect to x, the derivative of -x with respect to x is -ddx[x].
-ddx[x]
Step 6.7.5.1.3
Differentiate using the Power Rule which states that ddx[xn] is nxn-1 where n=1.
-11
Step 6.7.5.1.4
Multiply -1 by 1.
-1
-1
Step 6.7.5.2
Rewrite the problem using u and du.
e-xv=-(x(-e-x)+-eudu)
e-xv=-(x(-e-x)+-eudu)
Step 6.7.6
Since -1 is constant with respect to u, move -1 out of the integral.
e-xv=-(x(-e-x)-eudu)
Step 6.7.7
The integral of eu with respect to u is eu.
e-xv=-(x(-e-x)-(eu+C))
Step 6.7.8
Rewrite -(x(-e-x)-(eu+C)) as -(-xe-x-eu)+C.
e-xv=-(-xe-x-eu)+C
Step 6.7.9
Replace all occurrences of u with -x.
e-xv=-(-xe-x-e-x)+C
Step 6.7.10
Simplify.
Tap for more steps...
Step 6.7.10.1
Apply the distributive property.
e-xv=-(-xe-x)--e-x+C
Step 6.7.10.2
Multiply -(-xe-x).
Tap for more steps...
Step 6.7.10.2.1
Multiply -1 by -1.
e-xv=1(xe-x)--e-x+C
Step 6.7.10.2.2
Multiply x by 1.
e-xv=xe-x--e-x+C
e-xv=xe-x--e-x+C
Step 6.7.10.3
Multiply --e-x.
Tap for more steps...
Step 6.7.10.3.1
Multiply -1 by -1.
e-xv=xe-x+1e-x+C
Step 6.7.10.3.2
Multiply e-x by 1.
e-xv=xe-x+e-x+C
e-xv=xe-x+e-x+C
e-xv=xe-x+e-x+C
e-xv=xe-x+e-x+C
Step 6.8
Divide each term in e-xv=xe-x+e-x+C by e-x and simplify.
Tap for more steps...
Step 6.8.1
Divide each term in e-xv=xe-x+e-x+C by e-x.
e-xve-x=xe-xe-x+e-xe-x+Ce-x
Step 6.8.2
Simplify the left side.
Tap for more steps...
Step 6.8.2.1
Cancel the common factor of e-x.
Tap for more steps...
Step 6.8.2.1.1
Cancel the common factor.
e-xve-x=xe-xe-x+e-xe-x+Ce-x
Step 6.8.2.1.2
Divide v by 1.
v=xe-xe-x+e-xe-x+Ce-x
v=xe-xe-x+e-xe-x+Ce-x
v=xe-xe-x+e-xe-x+Ce-x
Step 6.8.3
Simplify the right side.
Tap for more steps...
Step 6.8.3.1
Simplify each term.
Tap for more steps...
Step 6.8.3.1.1
Cancel the common factor of e-x.
Tap for more steps...
Step 6.8.3.1.1.1
Cancel the common factor.
v=xe-xe-x+e-xe-x+Ce-x
Step 6.8.3.1.1.2
Divide x by 1.
v=x+e-xe-x+Ce-x
v=x+e-xe-x+Ce-x
Step 6.8.3.1.2
Cancel the common factor of e-x.
Tap for more steps...
Step 6.8.3.1.2.1
Cancel the common factor.
v=x+e-xe-x+Ce-x
Step 6.8.3.1.2.2
Rewrite the expression.
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
v=x+1+Ce-x
Step 7
Substitute y-1 for v.
y-1=x+1+Ce-x
 [x2  12  π  xdx ]