Calculus Examples

Solve the Differential Equation (dy)/(dx)=cos(x)cos(y)^2 , y(0)=pi/4
dydx=cos(x)cos2(y)dydx=cos(x)cos2(y) , y(0)=π4y(0)=π4
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by 1cos2(y)1cos2(y).
1cos2(y)dydx=1cos2(y)(cos(x)cos2(y))1cos2(y)dydx=1cos2(y)(cos(x)cos2(y))
Step 1.2
Cancel the common factor of cos2(y)cos2(y).
Tap for more steps...
Step 1.2.1
Factor cos2(y)cos2(y) out of cos(x)cos2(y)cos(x)cos2(y).
1cos2(y)dydx=1cos2(y)(cos2(y)cos(x))1cos2(y)dydx=1cos2(y)(cos2(y)cos(x))
Step 1.2.2
Cancel the common factor.
1cos2(y)dydx=1cos2(y)(cos2(y)cos(x))
Step 1.2.3
Rewrite the expression.
1cos2(y)dydx=cos(x)
1cos2(y)dydx=cos(x)
Step 1.3
Rewrite the equation.
1cos2(y)dy=cos(x)dx
1cos2(y)dy=cos(x)dx
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
1cos2(y)dy=cos(x)dx
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Convert from 1cos2(y) to sec2(y).
sec2(y)dy=cos(x)dx
Step 2.2.2
Since the derivative of tan(y) is sec2(y), the integral of sec2(y) is tan(y).
tan(y)+C1=cos(x)dx
tan(y)+C1=cos(x)dx
Step 2.3
The integral of cos(x) with respect to x is sin(x).
tan(y)+C1=sin(x)+C2
Step 2.4
Group the constant of integration on the right side as K.
tan(y)=sin(x)+K
tan(y)=sin(x)+K
Step 3
Solve for y.
Tap for more steps...
Step 3.1
Rewrite the equation as sin(x)+K=tan(y).
sin(x)+K=tan(y)
Step 3.2
Subtract K from both sides of the equation.
sin(x)=tan(y)-K
Step 3.3
Take the inverse sine of both sides of the equation to extract y from inside the sine.
x=arcsin(tan(y)-K)
Step 3.4
Rewrite the equation as arcsin(tan(y)-K)=x.
arcsin(tan(y)-K)=x
Step 3.5
Take the inverse arcsine of both sides of the equation to extract tan(y) from inside the arcsine.
tan(y)-K=sin(x)
Step 3.6
Add K to both sides of the equation.
tan(y)=sin(x)+K
Step 3.7
Take the inverse tangent of both sides of the equation to extract y from inside the tangent.
y=arctan(sin(x)+K)
Step 3.8
Since y is on the right side of the equation, switch the sides so it is on the left side of the equation.
arcsin(tan(y)-K)=x
Step 3.9
Take the inverse arcsine of both sides of the equation to extract tan(y) from inside the arcsine.
tan(y)-K=sin(x)
Step 3.10
Add K to both sides of the equation.
tan(y)=sin(x)+K
Step 3.11
Take the inverse tangent of both sides of the equation to extract y from inside the tangent.
y=arctan(sin(x)+K)
y=arctan(sin(x)+K)
Step 4
Use the initial condition to find the value of K by substituting 0 for x and π4 for y in y=arctan(sin(x)+K).
π4=arctan(sin(0)+K)
Step 5
Solve for K.
Tap for more steps...
Step 5.1
Rewrite the equation as arctan(sin(0)+K)=π4.
arctan(sin(0)+K)=π4
Step 5.2
Take the inverse sine of both sides of the equation to extract K from inside the sine.
sin(0)+K=arcsin(π4)
Step 5.3
Simplify the left side.
Tap for more steps...
Step 5.3.1
Simplify sin(0)+K.
Tap for more steps...
Step 5.3.1.1
The exact value of sin(0) is 0.
0+K=arcsin(π4)
Step 5.3.1.2
Add 0 and K.
K=arcsin(π4)
K=arcsin(π4)
K=arcsin(π4)
Step 5.4
Simplify the right side.
Tap for more steps...
Step 5.4.1
Evaluate arcsin(π4).
K=0.90333911
K=0.90333911
Step 5.5
The sine function is positive in the first and second quadrants. To find the second solution, subtract the reference angle from π to find the solution in the second quadrant.
K=(3.14159265)-0.90333911
Step 5.6
Solve for K.
Tap for more steps...
Step 5.6.1
Remove parentheses.
K=3.14159265-0.90333911
Step 5.6.2
Remove parentheses.
K=(3.14159265)-0.90333911
Step 5.6.3
Subtract 0.90333911 from 3.14159265.
K=2.23825354
K=2.23825354
Step 5.7
Exclude the solutions that do not make π4=arctan(sin(0)+K) true.
No solution
No solution
dydx=cos(x)cos2(y),y(0)=π4
(
(
)
)
|
|
[
[
]
]
7
7
8
8
9
9
°
°
θ
θ
4
4
5
5
6
6
/
/
^
^
×
×
>
>
π
π
1
1
2
2
3
3
-
-
+
+
÷
÷
<
<
!
!
,
,
0
0
.
.
%
%
=
=
 [x2  12  π  xdx ]