Enter a problem...
Calculus Examples
Step 1
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate using the Product Rule which states that is where and .
Step 1.3
Differentiate.
Step 1.3.1
By the Sum Rule, the derivative of with respect to is .
Step 1.3.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.3
Add and .
Step 1.3.4
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.5
Differentiate using the Power Rule which states that is where .
Step 1.3.6
Simplify the expression.
Step 1.3.6.1
Multiply by .
Step 1.3.6.2
Move to the left of .
Step 1.3.7
Differentiate using the Power Rule which states that is where .
Step 1.3.8
Simplify by adding terms.
Step 1.3.8.1
Multiply by .
Step 1.3.8.2
Subtract from .
Step 2
Step 2.1
Differentiate with respect to .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Differentiate using the Product Rule which states that is where and .
Step 2.4
Differentiate.
Step 2.4.1
By the Sum Rule, the derivative of with respect to is .
Step 2.4.2
Differentiate using the Power Rule which states that is where .
Step 2.4.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4.4
Simplify the expression.
Step 2.4.4.1
Add and .
Step 2.4.4.2
Multiply by .
Step 2.4.5
Differentiate using the Power Rule which states that is where .
Step 2.4.6
Simplify by adding terms.
Step 2.4.6.1
Multiply by .
Step 2.4.6.2
Add and .
Step 2.5
Simplify.
Step 2.5.1
Apply the distributive property.
Step 2.5.2
Combine terms.
Step 2.5.2.1
Multiply by .
Step 2.5.2.2
Multiply by .
Step 3
Step 3.1
Substitute for and for .
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
is not an identity.
is not an identity.
Step 4
Step 4.1
Substitute for .
Step 4.2
Substitute for .
Step 4.3
Substitute for .
Step 4.3.1
Substitute for .
Step 4.3.2
Cancel the common factor of and .
Step 4.3.2.1
Factor out of .
Step 4.3.2.2
Factor out of .
Step 4.3.2.3
Factor out of .
Step 4.3.2.4
Factor out of .
Step 4.3.2.5
Rewrite as .
Step 4.3.2.6
Factor out of .
Step 4.3.2.7
Cancel the common factors.
Step 4.3.2.7.1
Factor out of .
Step 4.3.2.7.2
Cancel the common factor.
Step 4.3.2.7.3
Rewrite the expression.
Step 4.3.3
Simplify the numerator.
Step 4.3.3.1
Add and .
Step 4.3.3.2
Subtract from .
Step 4.3.3.3
Factor out of .
Step 4.3.3.3.1
Factor out of .
Step 4.3.3.3.2
Factor out of .
Step 4.3.3.3.3
Factor out of .
Step 4.3.3.4
Multiply by .
Step 4.3.4
Cancel the common factor of and .
Step 4.3.4.1
Factor out of .
Step 4.3.4.2
Factor out of .
Step 4.3.4.3
Factor out of .
Step 4.3.4.4
Rewrite as .
Step 4.3.4.5
Cancel the common factor.
Step 4.3.4.6
Rewrite the expression.
Step 4.3.5
Multiply by .
Step 4.4
Find the integration factor .
Step 5
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
The integral of with respect to is .
Step 5.3
Simplify.
Step 5.4
Simplify each term.
Step 5.4.1
Simplify by moving inside the logarithm.
Step 5.4.2
Exponentiation and log are inverse functions.
Step 5.4.3
Remove the absolute value in because exponentiations with even powers are always positive.
Step 6
Step 6.1
Multiply by .
Step 6.2
Apply the distributive property.
Step 6.3
Rewrite using the commutative property of multiplication.
Step 6.4
Rewrite using the commutative property of multiplication.
Step 6.5
Multiply by by adding the exponents.
Step 6.5.1
Move .
Step 6.5.2
Multiply by .
Step 6.6
Apply the distributive property.
Step 6.7
Multiply by by adding the exponents.
Step 6.7.1
Move .
Step 6.7.2
Multiply by .
Step 6.7.2.1
Raise to the power of .
Step 6.7.2.2
Use the power rule to combine exponents.
Step 6.7.3
Add and .
Step 6.8
Multiply by .
Step 6.9
Multiply by by adding the exponents.
Step 6.9.1
Move .
Step 6.9.2
Multiply by .
Step 6.9.2.1
Raise to the power of .
Step 6.9.2.2
Use the power rule to combine exponents.
Step 6.9.3
Add and .
Step 6.10
Apply the distributive property.
Step 6.11
Multiply by by adding the exponents.
Step 6.11.1
Move .
Step 6.11.2
Multiply by .
Step 6.11.2.1
Raise to the power of .
Step 6.11.2.2
Use the power rule to combine exponents.
Step 6.11.3
Add and .
Step 6.12
Rewrite using the commutative property of multiplication.
Step 6.13
Multiply by .
Step 7
Set equal to the integral of .
Step 8
Step 8.1
Split the single integral into multiple integrals.
Step 8.2
Since is constant with respect to , move out of the integral.
Step 8.3
By the Power Rule, the integral of with respect to is .
Step 8.4
Since is constant with respect to , move out of the integral.
Step 8.5
By the Power Rule, the integral of with respect to is .
Step 8.6
Simplify.
Step 8.7
Simplify.
Step 8.7.1
Combine and .
Step 8.7.2
Cancel the common factor of and .
Step 8.7.2.1
Factor out of .
Step 8.7.2.2
Cancel the common factors.
Step 8.7.2.2.1
Factor out of .
Step 8.7.2.2.2
Cancel the common factor.
Step 8.7.2.2.3
Rewrite the expression.
Step 8.7.2.2.4
Divide by .
Step 8.7.3
Combine and .
Step 8.7.4
Combine and .
Step 8.7.5
Combine and .
Step 8.7.6
Cancel the common factor of and .
Step 8.7.6.1
Factor out of .
Step 8.7.6.2
Cancel the common factors.
Step 8.7.6.2.1
Factor out of .
Step 8.7.6.2.2
Cancel the common factor.
Step 8.7.6.2.3
Rewrite the expression.
Step 8.7.6.2.4
Divide by .
Step 9
Since the integral of will contain an integration constant, we can replace with .
Step 10
Set .
Step 11
Step 11.1
Differentiate with respect to .
Step 11.2
By the Sum Rule, the derivative of with respect to is .
Step 11.3
Evaluate .
Step 11.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 11.3.2
Differentiate using the Power Rule which states that is where .
Step 11.3.3
Multiply by .
Step 11.4
Evaluate .
Step 11.4.1
Since is constant with respect to , the derivative of with respect to is .
Step 11.4.2
Differentiate using the Power Rule which states that is where .
Step 11.4.3
Multiply by .
Step 11.5
Differentiate using the function rule which states that the derivative of is .
Step 11.6
Reorder terms.
Step 12
Step 12.1
Move all terms not containing to the right side of the equation.
Step 12.1.1
Subtract from both sides of the equation.
Step 12.1.2
Add to both sides of the equation.
Step 12.1.3
Combine the opposite terms in .
Step 12.1.3.1
Subtract from .
Step 12.1.3.2
Add and .
Step 12.1.3.3
Add and .
Step 13
Step 13.1
Integrate both sides of .
Step 13.2
Evaluate .
Step 13.3
The integral of with respect to is .
Step 13.4
Add and .
Step 14
Substitute for in .
Step 15
Rewrite using the commutative property of multiplication.