Calculus Examples

Solve the Differential Equation 2x(yd)x+(1+x^2)dy=0
Step 1
Subtract from both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Cancel the common factor of .
Tap for more steps...
Step 3.1.1
Factor out of .
Step 3.1.2
Cancel the common factor.
Step 3.1.3
Rewrite the expression.
Step 3.2
Rewrite using the commutative property of multiplication.
Step 3.3
Combine and .
Step 3.4
Cancel the common factor of .
Tap for more steps...
Step 3.4.1
Factor out of .
Step 3.4.2
Factor out of .
Step 3.4.3
Cancel the common factor.
Step 3.4.4
Rewrite the expression.
Step 3.5
Combine and .
Step 3.6
Move the negative in front of the fraction.
Step 4
Integrate both sides.
Tap for more steps...
Step 4.1
Set up an integral on each side.
Step 4.2
The integral of with respect to is .
Step 4.3
Integrate the right side.
Tap for more steps...
Step 4.3.1
Since is constant with respect to , move out of the integral.
Step 4.3.2
Since is constant with respect to , move out of the integral.
Step 4.3.3
Multiply by .
Step 4.3.4
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 4.3.4.1
Let . Find .
Tap for more steps...
Step 4.3.4.1.1
Differentiate .
Step 4.3.4.1.2
By the Sum Rule, the derivative of with respect to is .
Step 4.3.4.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 4.3.4.1.4
Differentiate using the Power Rule which states that is where .
Step 4.3.4.1.5
Add and .
Step 4.3.4.2
Rewrite the problem using and .
Step 4.3.5
Simplify.
Tap for more steps...
Step 4.3.5.1
Multiply by .
Step 4.3.5.2
Move to the left of .
Step 4.3.6
Since is constant with respect to , move out of the integral.
Step 4.3.7
Simplify.
Tap for more steps...
Step 4.3.7.1
Combine and .
Step 4.3.7.2
Cancel the common factor of and .
Tap for more steps...
Step 4.3.7.2.1
Factor out of .
Step 4.3.7.2.2
Cancel the common factors.
Tap for more steps...
Step 4.3.7.2.2.1
Factor out of .
Step 4.3.7.2.2.2
Cancel the common factor.
Step 4.3.7.2.2.3
Rewrite the expression.
Step 4.3.7.2.2.4
Divide by .
Step 4.3.8
The integral of with respect to is .
Step 4.3.9
Simplify.
Step 4.3.10
Replace all occurrences of with .
Step 4.4
Group the constant of integration on the right side as .
Step 5
Solve for .
Tap for more steps...
Step 5.1
Move all the terms containing a logarithm to the left side of the equation.
Step 5.2
Use the product property of logarithms, .
Step 5.3
To multiply absolute values, multiply the terms inside each absolute value.
Step 5.4
Apply the distributive property.
Step 5.5
Multiply by .
Step 5.6
To solve for , rewrite the equation using properties of logarithms.
Step 5.7
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 5.8
Solve for .
Tap for more steps...
Step 5.8.1
Rewrite the equation as .
Step 5.8.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 5.8.3
Factor out of .
Tap for more steps...
Step 5.8.3.1
Factor out of .
Step 5.8.3.2
Factor out of .
Step 5.8.3.3
Factor out of .
Step 5.8.4
Divide each term in by and simplify.
Tap for more steps...
Step 5.8.4.1
Divide each term in by .
Step 5.8.4.2
Simplify the left side.
Tap for more steps...
Step 5.8.4.2.1
Cancel the common factor of .
Tap for more steps...
Step 5.8.4.2.1.1
Cancel the common factor.
Step 5.8.4.2.1.2
Divide by .
Step 6
Simplify the constant of integration.