Calculus Examples

Solve the Differential Equation (dy)/(dx)=(3y^2+x^2)/(2xy)
Step 1
Rewrite the differential equation as a function of .
Tap for more steps...
Step 1.1
Split and simplify.
Tap for more steps...
Step 1.1.1
Split the fraction into two fractions.
Step 1.1.2
Simplify each term.
Tap for more steps...
Step 1.1.2.1
Cancel the common factor of and .
Tap for more steps...
Step 1.1.2.1.1
Factor out of .
Step 1.1.2.1.2
Cancel the common factors.
Tap for more steps...
Step 1.1.2.1.2.1
Factor out of .
Step 1.1.2.1.2.2
Cancel the common factor.
Step 1.1.2.1.2.3
Rewrite the expression.
Step 1.1.2.2
Cancel the common factor of and .
Tap for more steps...
Step 1.1.2.2.1
Factor out of .
Step 1.1.2.2.2
Cancel the common factors.
Tap for more steps...
Step 1.1.2.2.2.1
Factor out of .
Step 1.1.2.2.2.2
Cancel the common factor.
Step 1.1.2.2.2.3
Rewrite the expression.
Step 1.2
Factor out from .
Tap for more steps...
Step 1.2.1
Factor out of .
Step 1.2.2
Reorder and .
Step 1.3
Rewrite the differential equation as .
Tap for more steps...
Step 1.3.1
Factor out from .
Tap for more steps...
Step 1.3.1.1
Factor out of .
Step 1.3.1.2
Reorder and .
Step 1.3.2
Rewrite as .
Step 2
Let . Substitute for .
Step 3
Solve for .
Step 4
Use the product rule to find the derivative of with respect to .
Step 5
Substitute for .
Step 6
Solve the substituted differential equation.
Tap for more steps...
Step 6.1
Separate the variables.
Tap for more steps...
Step 6.1.1
Solve for .
Tap for more steps...
Step 6.1.1.1
Simplify each term.
Tap for more steps...
Step 6.1.1.1.1
Combine and .
Step 6.1.1.1.2
Rewrite the expression using the negative exponent rule .
Step 6.1.1.1.3
Multiply by .
Step 6.1.1.2
Subtract from both sides of the equation.
Step 6.1.1.3
Divide each term in by and simplify.
Tap for more steps...
Step 6.1.1.3.1
Divide each term in by .
Step 6.1.1.3.2
Simplify the left side.
Tap for more steps...
Step 6.1.1.3.2.1
Cancel the common factor of .
Tap for more steps...
Step 6.1.1.3.2.1.1
Cancel the common factor.
Step 6.1.1.3.2.1.2
Divide by .
Step 6.1.1.3.3
Simplify the right side.
Tap for more steps...
Step 6.1.1.3.3.1
Combine the numerators over the common denominator.
Step 6.1.1.3.3.2
To write as a fraction with a common denominator, multiply by .
Step 6.1.1.3.3.3
Simplify terms.
Tap for more steps...
Step 6.1.1.3.3.3.1
Combine and .
Step 6.1.1.3.3.3.2
Combine the numerators over the common denominator.
Step 6.1.1.3.3.3.3
Simplify each term.
Tap for more steps...
Step 6.1.1.3.3.3.3.1
Simplify the numerator.
Tap for more steps...
Step 6.1.1.3.3.3.3.1.1
Factor out of .
Tap for more steps...
Step 6.1.1.3.3.3.3.1.1.1
Factor out of .
Step 6.1.1.3.3.3.3.1.1.2
Factor out of .
Step 6.1.1.3.3.3.3.1.1.3
Factor out of .
Step 6.1.1.3.3.3.3.1.2
Multiply by .
Step 6.1.1.3.3.3.3.1.3
Subtract from .
Step 6.1.1.3.3.3.3.2
Multiply by .
Step 6.1.1.3.3.4
Simplify the numerator.
Tap for more steps...
Step 6.1.1.3.3.4.1
To write as a fraction with a common denominator, multiply by .
Step 6.1.1.3.3.4.2
Multiply by .
Step 6.1.1.3.3.4.3
Combine the numerators over the common denominator.
Step 6.1.1.3.3.4.4
Multiply by .
Step 6.1.1.3.3.5
Multiply the numerator by the reciprocal of the denominator.
Step 6.1.1.3.3.6
Multiply by .
Step 6.1.2
Regroup factors.
Step 6.1.3
Multiply both sides by .
Step 6.1.4
Simplify.
Tap for more steps...
Step 6.1.4.1
Multiply by .
Step 6.1.4.2
Cancel the common factor of .
Tap for more steps...
Step 6.1.4.2.1
Factor out of .
Step 6.1.4.2.2
Cancel the common factor.
Step 6.1.4.2.3
Rewrite the expression.
Step 6.1.4.3
Cancel the common factor of .
Tap for more steps...
Step 6.1.4.3.1
Cancel the common factor.
Step 6.1.4.3.2
Rewrite the expression.
Step 6.1.5
Rewrite the equation.
Step 6.2
Integrate both sides.
Tap for more steps...
Step 6.2.1
Set up an integral on each side.
Step 6.2.2
Integrate the left side.
Tap for more steps...
Step 6.2.2.1
Since is constant with respect to , move out of the integral.
Step 6.2.2.2
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 6.2.2.2.1
Let . Find .
Tap for more steps...
Step 6.2.2.2.1.1
Differentiate .
Step 6.2.2.2.1.2
By the Sum Rule, the derivative of with respect to is .
Step 6.2.2.2.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 6.2.2.2.1.4
Differentiate using the Power Rule which states that is where .
Step 6.2.2.2.1.5
Add and .
Step 6.2.2.2.2
Rewrite the problem using and .
Step 6.2.2.3
Simplify.
Tap for more steps...
Step 6.2.2.3.1
Multiply by .
Step 6.2.2.3.2
Move to the left of .
Step 6.2.2.4
Since is constant with respect to , move out of the integral.
Step 6.2.2.5
Simplify.
Tap for more steps...
Step 6.2.2.5.1
Combine and .
Step 6.2.2.5.2
Cancel the common factor of .
Tap for more steps...
Step 6.2.2.5.2.1
Cancel the common factor.
Step 6.2.2.5.2.2
Rewrite the expression.
Step 6.2.2.5.3
Multiply by .
Step 6.2.2.6
The integral of with respect to is .
Step 6.2.2.7
Replace all occurrences of with .
Step 6.2.3
The integral of with respect to is .
Step 6.2.4
Group the constant of integration on the right side as .
Step 6.3
Solve for .
Tap for more steps...
Step 6.3.1
Move all the terms containing a logarithm to the left side of the equation.
Step 6.3.2
Use the quotient property of logarithms, .
Step 6.3.3
To solve for , rewrite the equation using properties of logarithms.
Step 6.3.4
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 6.3.5
Solve for .
Tap for more steps...
Step 6.3.5.1
Rewrite the equation as .
Step 6.3.5.2
Multiply both sides by .
Step 6.3.5.3
Simplify the left side.
Tap for more steps...
Step 6.3.5.3.1
Cancel the common factor of .
Tap for more steps...
Step 6.3.5.3.1.1
Cancel the common factor.
Step 6.3.5.3.1.2
Rewrite the expression.
Step 6.3.5.4
Solve for .
Tap for more steps...
Step 6.3.5.4.1
Reorder factors in .
Step 6.3.5.4.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 6.3.5.4.3
Reorder factors in .
Step 6.3.5.4.4
Subtract from both sides of the equation.
Step 6.3.5.4.5
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 6.4
Group the constant terms together.
Tap for more steps...
Step 6.4.1
Simplify the constant of integration.
Step 6.4.2
Combine constants with the plus or minus.
Step 7
Substitute for .
Step 8
Solve for .
Tap for more steps...
Step 8.1
Multiply both sides by .
Step 8.2
Simplify the left side.
Tap for more steps...
Step 8.2.1
Cancel the common factor of .
Tap for more steps...
Step 8.2.1.1
Cancel the common factor.
Step 8.2.1.2
Rewrite the expression.