Enter a problem...
Calculus Examples
Step 1
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Step 1.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2
Combine and .
Step 1.2.3
Cancel the common factor of .
Step 1.2.3.1
Factor out of .
Step 1.2.3.2
Cancel the common factor.
Step 1.2.3.3
Rewrite the expression.
Step 1.2.4
Rewrite the expression using the negative exponent rule .
Step 1.2.5
Combine and .
Step 1.3
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Simplify the expression.
Step 2.2.1.1
Negate the exponent of and move it out of the denominator.
Step 2.2.1.2
Simplify.
Step 2.2.1.2.1
Multiply the exponents in .
Step 2.2.1.2.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2.1.2
Multiply .
Step 2.2.1.2.1.2.1
Multiply by .
Step 2.2.1.2.1.2.2
Multiply by .
Step 2.2.1.2.2
Multiply by .
Step 2.2.2
The integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Apply basic rules of exponents.
Step 2.3.2.1
Move out of the denominator by raising it to the power.
Step 2.3.2.2
Multiply the exponents in .
Step 2.3.2.2.1
Apply the power rule and multiply exponents, .
Step 2.3.2.2.2
Multiply by .
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Simplify the answer.
Step 2.3.4.1
Rewrite as .
Step 2.3.4.2
Simplify.
Step 2.3.4.2.1
Multiply by .
Step 2.3.4.2.2
Combine and .
Step 2.3.4.2.3
Move the negative in front of the fraction.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 3.2
Expand the left side.
Step 3.2.1
Expand by moving outside the logarithm.
Step 3.2.2
The natural logarithm of is .
Step 3.2.3
Multiply by .