Enter a problem...
Calculus Examples
Step 1
Step 1.1
Solve for .
Step 1.1.1
Subtract from both sides of the equation.
Step 1.1.2
Divide each term in by and simplify.
Step 1.1.2.1
Divide each term in by .
Step 1.1.2.2
Simplify the left side.
Step 1.1.2.2.1
Dividing two negative values results in a positive value.
Step 1.1.2.2.2
Cancel the common factor of .
Step 1.1.2.2.2.1
Cancel the common factor.
Step 1.1.2.2.2.2
Divide by .
Step 1.1.2.3
Simplify the right side.
Step 1.1.2.3.1
Dividing two negative values results in a positive value.
Step 1.1.2.3.2
Factor out of .
Step 1.1.2.3.3
Separate fractions.
Step 1.1.2.3.4
Convert from to .
Step 1.1.2.3.5
Separate fractions.
Step 1.1.2.3.6
Convert from to .
Step 1.1.2.3.7
Divide by .
Step 1.2
Multiply both sides by .
Step 1.3
Cancel the common factor of .
Step 1.3.1
Factor out of .
Step 1.3.2
Cancel the common factor.
Step 1.3.3
Rewrite the expression.
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Simplify the expression.
Step 2.2.1.1
Negate the exponent of and move it out of the denominator.
Step 2.2.1.2
Simplify.
Step 2.2.1.2.1
Multiply the exponents in .
Step 2.2.1.2.1.1
Apply the power rule and multiply exponents, .
Step 2.2.1.2.1.2
Multiply .
Step 2.2.1.2.1.2.1
Multiply by .
Step 2.2.1.2.1.2.2
Multiply by .
Step 2.2.1.2.2
Multiply by .
Step 2.2.2
The integral of with respect to is .
Step 2.3
Since the derivative of is , the integral of is .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Take the natural logarithm of both sides of the equation to remove the variable from the exponent.
Step 3.2
Expand the left side.
Step 3.2.1
Expand by moving outside the logarithm.
Step 3.2.2
The natural logarithm of is .
Step 3.2.3
Multiply by .