Calculus Examples

Solve the Differential Equation (dy)/(dx)=(3x+2)/(y^2-1)
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Simplify the denominator.
Tap for more steps...
Step 1.2.1.1
Rewrite as .
Step 1.2.1.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.2.2
Multiply by .
Step 1.2.3
Simplify the numerator.
Tap for more steps...
Step 1.2.3.1
Rewrite as .
Step 1.2.3.2
Since both terms are perfect squares, factor using the difference of squares formula, where and .
Step 1.2.4
Cancel the common factor of .
Tap for more steps...
Step 1.2.4.1
Cancel the common factor.
Step 1.2.4.2
Rewrite the expression.
Step 1.2.5
Cancel the common factor of .
Tap for more steps...
Step 1.2.5.1
Cancel the common factor.
Step 1.2.5.2
Divide by .
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Split the single integral into multiple integrals.
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.2.3
Apply the constant rule.
Step 2.2.4
Simplify.
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Apply the constant rule.
Step 2.3.5
Simplify.
Tap for more steps...
Step 2.3.5.1
Combine and .
Step 2.3.5.2
Simplify.
Step 2.3.5.3
Reorder terms.
Step 2.4
Group the constant of integration on the right side as .