Enter a problem...
Calculus Examples
dydx=y2x4-y2+x4-1dydx=y2x4−y2+x4−1
Step 1
Step 1.1
Factor.
Step 1.1.1
Factor out the greatest common factor from each group.
Step 1.1.1.1
Group the first two terms and the last two terms.
dydx=(y2x4-y2)+x4-1dydx=(y2x4−y2)+x4−1
Step 1.1.1.2
Factor out the greatest common factor (GCF) from each group.
dydx=y2(x4-1)+1(x4-1)dydx=y2(x4−1)+1(x4−1)
dydx=y2(x4-1)+1(x4-1)dydx=y2(x4−1)+1(x4−1)
Step 1.1.2
Factor the polynomial by factoring out the greatest common factor, x4-1x4−1.
dydx=(x4-1)(y2+1)dydx=(x4−1)(y2+1)
Step 1.1.3
Rewrite x4x4 as (x2)2(x2)2.
dydx=((x2)2-1)(y2+1)dydx=((x2)2−1)(y2+1)
Step 1.1.4
Rewrite 11 as 1212.
dydx=((x2)2-12)(y2+1)dydx=((x2)2−12)(y2+1)
Step 1.1.5
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=x2a=x2 and b=1b=1.
dydx=(x2+1)(x2-1)(y2+1)dydx=(x2+1)(x2−1)(y2+1)
Step 1.1.6
Simplify.
Step 1.1.6.1
Rewrite 11 as 1212.
dydx=(x2+1)(x2-12)(y2+1)dydx=(x2+1)(x2−12)(y2+1)
Step 1.1.6.2
Factor.
Step 1.1.6.2.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2−b2=(a+b)(a−b) where a=xa=x and b=1b=1.
dydx=(x2+1)((x+1)(x-1))(y2+1)dydx=(x2+1)((x+1)(x−1))(y2+1)
Step 1.1.6.2.2
Remove unnecessary parentheses.
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x−1)(y2+1)
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x−1)(y2+1)
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x−1)(y2+1)
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x−1)(y2+1)
Step 1.2
Multiply both sides by 1y2+11y2+1.
1y2+1dydx=1y2+1((x2+1)(x+1)(x-1)(y2+1))1y2+1dydx=1y2+1((x2+1)(x+1)(x−1)(y2+1))
Step 1.3
Simplify.
Step 1.3.1
Cancel the common factor of y2+1y2+1.
Step 1.3.1.1
Factor y2+1y2+1 out of (x2+1)(x+1)(x-1)(y2+1)(x2+1)(x+1)(x−1)(y2+1).
1y2+1dydx=1y2+1((y2+1)((x2+1)(x+1)(x-1)))1y2+1dydx=1y2+1((y2+1)((x2+1)(x+1)(x−1)))
Step 1.3.1.2
Cancel the common factor.
1y2+1dydx=1y2+1((y2+1)((x2+1)(x+1)(x-1)))
Step 1.3.1.3
Rewrite the expression.
1y2+1dydx=(x2+1)(x+1)(x-1)
1y2+1dydx=(x2+1)(x+1)(x-1)
Step 1.3.2
Expand (x2+1)(x+1) using the FOIL Method.
Step 1.3.2.1
Apply the distributive property.
1y2+1dydx=(x2(x+1)+1(x+1))(x-1)
Step 1.3.2.2
Apply the distributive property.
1y2+1dydx=(x2x+x2⋅1+1(x+1))(x-1)
Step 1.3.2.3
Apply the distributive property.
1y2+1dydx=(x2x+x2⋅1+1x+1⋅1)(x-1)
1y2+1dydx=(x2x+x2⋅1+1x+1⋅1)(x-1)
Step 1.3.3
Simplify each term.
Step 1.3.3.1
Multiply x2 by x by adding the exponents.
Step 1.3.3.1.1
Multiply x2 by x.
Step 1.3.3.1.1.1
Raise x to the power of 1.
1y2+1dydx=(x2x1+x2⋅1+1x+1⋅1)(x-1)
Step 1.3.3.1.1.2
Use the power rule aman=am+n to combine exponents.
1y2+1dydx=(x2+1+x2⋅1+1x+1⋅1)(x-1)
1y2+1dydx=(x2+1+x2⋅1+1x+1⋅1)(x-1)
Step 1.3.3.1.2
Add 2 and 1.
1y2+1dydx=(x3+x2⋅1+1x+1⋅1)(x-1)
1y2+1dydx=(x3+x2⋅1+1x+1⋅1)(x-1)
Step 1.3.3.2
Multiply x2 by 1.
1y2+1dydx=(x3+x2+1x+1⋅1)(x-1)
Step 1.3.3.3
Multiply x by 1.
1y2+1dydx=(x3+x2+x+1⋅1)(x-1)
Step 1.3.3.4
Multiply 1 by 1.
1y2+1dydx=(x3+x2+x+1)(x-1)
1y2+1dydx=(x3+x2+x+1)(x-1)
Step 1.3.4
Expand (x3+x2+x+1)(x-1) by multiplying each term in the first expression by each term in the second expression.
1y2+1dydx=x3x+x3⋅-1+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5
Simplify each term.
Step 1.3.5.1
Multiply x3 by x by adding the exponents.
Step 1.3.5.1.1
Multiply x3 by x.
Step 1.3.5.1.1.1
Raise x to the power of 1.
1y2+1dydx=x3x1+x3⋅-1+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.1.1.2
Use the power rule aman=am+n to combine exponents.
1y2+1dydx=x3+1+x3⋅-1+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
1y2+1dydx=x3+1+x3⋅-1+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.1.2
Add 3 and 1.
1y2+1dydx=x4+x3⋅-1+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
1y2+1dydx=x4+x3⋅-1+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.2
Move -1 to the left of x3.
1y2+1dydx=x4-1⋅x3+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.3
Rewrite -1x3 as -x3.
1y2+1dydx=x4-x3+x2x+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.4
Multiply x2 by x by adding the exponents.
Step 1.3.5.4.1
Multiply x2 by x.
Step 1.3.5.4.1.1
Raise x to the power of 1.
1y2+1dydx=x4-x3+x2x1+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.4.1.2
Use the power rule aman=am+n to combine exponents.
1y2+1dydx=x4-x3+x2+1+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
1y2+1dydx=x4-x3+x2+1+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.4.2
Add 2 and 1.
1y2+1dydx=x4-x3+x3+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
1y2+1dydx=x4-x3+x3+x2⋅-1+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.5
Move -1 to the left of x2.
1y2+1dydx=x4-x3+x3-1⋅x2+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.6
Rewrite -1x2 as -x2.
1y2+1dydx=x4-x3+x3-x2+x⋅x+x⋅-1+1x+1⋅-1
Step 1.3.5.7
Multiply x by x.
1y2+1dydx=x4-x3+x3-x2+x2+x⋅-1+1x+1⋅-1
Step 1.3.5.8
Move -1 to the left of x.
1y2+1dydx=x4-x3+x3-x2+x2-1⋅x+1x+1⋅-1
Step 1.3.5.9
Rewrite -1x as -x.
1y2+1dydx=x4-x3+x3-x2+x2-x+1x+1⋅-1
Step 1.3.5.10
Multiply x by 1.
1y2+1dydx=x4-x3+x3-x2+x2-x+x+1⋅-1
Step 1.3.5.11
Multiply -1 by 1.
1y2+1dydx=x4-x3+x3-x2+x2-x+x-1
1y2+1dydx=x4-x3+x3-x2+x2-x+x-1
Step 1.3.6
Combine the opposite terms in x4-x3+x3-x2+x2-x+x-1.
Step 1.3.6.1
Add -x3 and x3.
1y2+1dydx=x4+0-x2+x2-x+x-1
Step 1.3.6.2
Add x4 and 0.
1y2+1dydx=x4-x2+x2-x+x-1
Step 1.3.6.3
Add -x2 and x2.
1y2+1dydx=x4+0-x+x-1
Step 1.3.6.4
Add x4 and 0.
1y2+1dydx=x4-x+x-1
Step 1.3.6.5
Add -x and x.
1y2+1dydx=x4+0-1
Step 1.3.6.6
Add x4 and 0.
1y2+1dydx=x4-1
1y2+1dydx=x4-1
1y2+1dydx=x4-1
Step 1.4
Rewrite the equation.
1y2+1dy=(x4-1)dx
1y2+1dy=(x4-1)dx
Step 2
Step 2.1
Set up an integral on each side.
∫1y2+1dy=∫x4-1dx
Step 2.2
Integrate the left side.
Step 2.2.1
Simplify the expression.
Step 2.2.1.1
Reorder y2 and 1.
∫11+y2dy=∫x4-1dx
Step 2.2.1.2
Rewrite 1 as 12.
∫112+y2dy=∫x4-1dx
∫112+y2dy=∫x4-1dx
Step 2.2.2
The integral of 112+y2 with respect to y is arctan(y)+C1.
arctan(y)+C1=∫x4-1dx
arctan(y)+C1=∫x4-1dx
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
arctan(y)+C1=∫x4dx+∫-1dx
Step 2.3.2
By the Power Rule, the integral of x4 with respect to x is 15x5.
arctan(y)+C1=15x5+C2+∫-1dx
Step 2.3.3
Apply the constant rule.
arctan(y)+C1=15x5+C2-x+C3
Step 2.3.4
Simplify.
arctan(y)+C1=15x5-x+C4
arctan(y)+C1=15x5-x+C4
Step 2.4
Group the constant of integration on the right side as K.
arctan(y)=15x5-x+K
arctan(y)=15x5-x+K
Step 3
Step 3.1
Take the inverse arctangent of both sides of the equation to extract y from inside the arctangent.
y=tan(15x5-x+K)
Step 3.2
Simplify the right side.
Step 3.2.1
Combine 15 and x5.
y=tan(x55-x+K)
y=tan(x55-x+K)
y=tan(x55-x+K)