Calculus Examples

Solve the Differential Equation (dy)/(dx)=y^2x^4-y^2+x^4-1
dydx=y2x4-y2+x4-1dydx=y2x4y2+x41
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Factor.
Tap for more steps...
Step 1.1.1
Factor out the greatest common factor from each group.
Tap for more steps...
Step 1.1.1.1
Group the first two terms and the last two terms.
dydx=(y2x4-y2)+x4-1dydx=(y2x4y2)+x41
Step 1.1.1.2
Factor out the greatest common factor (GCF) from each group.
dydx=y2(x4-1)+1(x4-1)dydx=y2(x41)+1(x41)
dydx=y2(x4-1)+1(x4-1)dydx=y2(x41)+1(x41)
Step 1.1.2
Factor the polynomial by factoring out the greatest common factor, x4-1x41.
dydx=(x4-1)(y2+1)dydx=(x41)(y2+1)
Step 1.1.3
Rewrite x4x4 as (x2)2(x2)2.
dydx=((x2)2-1)(y2+1)dydx=((x2)21)(y2+1)
Step 1.1.4
Rewrite 11 as 1212.
dydx=((x2)2-12)(y2+1)dydx=((x2)212)(y2+1)
Step 1.1.5
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=x2a=x2 and b=1b=1.
dydx=(x2+1)(x2-1)(y2+1)dydx=(x2+1)(x21)(y2+1)
Step 1.1.6
Simplify.
Tap for more steps...
Step 1.1.6.1
Rewrite 11 as 1212.
dydx=(x2+1)(x2-12)(y2+1)dydx=(x2+1)(x212)(y2+1)
Step 1.1.6.2
Factor.
Tap for more steps...
Step 1.1.6.2.1
Since both terms are perfect squares, factor using the difference of squares formula, a2-b2=(a+b)(a-b)a2b2=(a+b)(ab) where a=xa=x and b=1b=1.
dydx=(x2+1)((x+1)(x-1))(y2+1)dydx=(x2+1)((x+1)(x1))(y2+1)
Step 1.1.6.2.2
Remove unnecessary parentheses.
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x1)(y2+1)
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x1)(y2+1)
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x1)(y2+1)
dydx=(x2+1)(x+1)(x-1)(y2+1)dydx=(x2+1)(x+1)(x1)(y2+1)
Step 1.2
Multiply both sides by 1y2+11y2+1.
1y2+1dydx=1y2+1((x2+1)(x+1)(x-1)(y2+1))1y2+1dydx=1y2+1((x2+1)(x+1)(x1)(y2+1))
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Cancel the common factor of y2+1y2+1.
Tap for more steps...
Step 1.3.1.1
Factor y2+1y2+1 out of (x2+1)(x+1)(x-1)(y2+1)(x2+1)(x+1)(x1)(y2+1).
1y2+1dydx=1y2+1((y2+1)((x2+1)(x+1)(x-1)))1y2+1dydx=1y2+1((y2+1)((x2+1)(x+1)(x1)))
Step 1.3.1.2
Cancel the common factor.
1y2+1dydx=1y2+1((y2+1)((x2+1)(x+1)(x-1)))
Step 1.3.1.3
Rewrite the expression.
1y2+1dydx=(x2+1)(x+1)(x-1)
1y2+1dydx=(x2+1)(x+1)(x-1)
Step 1.3.2
Expand (x2+1)(x+1) using the FOIL Method.
Tap for more steps...
Step 1.3.2.1
Apply the distributive property.
1y2+1dydx=(x2(x+1)+1(x+1))(x-1)
Step 1.3.2.2
Apply the distributive property.
1y2+1dydx=(x2x+x21+1(x+1))(x-1)
Step 1.3.2.3
Apply the distributive property.
1y2+1dydx=(x2x+x21+1x+11)(x-1)
1y2+1dydx=(x2x+x21+1x+11)(x-1)
Step 1.3.3
Simplify each term.
Tap for more steps...
Step 1.3.3.1
Multiply x2 by x by adding the exponents.
Tap for more steps...
Step 1.3.3.1.1
Multiply x2 by x.
Tap for more steps...
Step 1.3.3.1.1.1
Raise x to the power of 1.
1y2+1dydx=(x2x1+x21+1x+11)(x-1)
Step 1.3.3.1.1.2
Use the power rule aman=am+n to combine exponents.
1y2+1dydx=(x2+1+x21+1x+11)(x-1)
1y2+1dydx=(x2+1+x21+1x+11)(x-1)
Step 1.3.3.1.2
Add 2 and 1.
1y2+1dydx=(x3+x21+1x+11)(x-1)
1y2+1dydx=(x3+x21+1x+11)(x-1)
Step 1.3.3.2
Multiply x2 by 1.
1y2+1dydx=(x3+x2+1x+11)(x-1)
Step 1.3.3.3
Multiply x by 1.
1y2+1dydx=(x3+x2+x+11)(x-1)
Step 1.3.3.4
Multiply 1 by 1.
1y2+1dydx=(x3+x2+x+1)(x-1)
1y2+1dydx=(x3+x2+x+1)(x-1)
Step 1.3.4
Expand (x3+x2+x+1)(x-1) by multiplying each term in the first expression by each term in the second expression.
1y2+1dydx=x3x+x3-1+x2x+x2-1+xx+x-1+1x+1-1
Step 1.3.5
Simplify each term.
Tap for more steps...
Step 1.3.5.1
Multiply x3 by x by adding the exponents.
Tap for more steps...
Step 1.3.5.1.1
Multiply x3 by x.
Tap for more steps...
Step 1.3.5.1.1.1
Raise x to the power of 1.
1y2+1dydx=x3x1+x3-1+x2x+x2-1+xx+x-1+1x+1-1
Step 1.3.5.1.1.2
Use the power rule aman=am+n to combine exponents.
1y2+1dydx=x3+1+x3-1+x2x+x2-1+xx+x-1+1x+1-1
1y2+1dydx=x3+1+x3-1+x2x+x2-1+xx+x-1+1x+1-1
Step 1.3.5.1.2
Add 3 and 1.
1y2+1dydx=x4+x3-1+x2x+x2-1+xx+x-1+1x+1-1
1y2+1dydx=x4+x3-1+x2x+x2-1+xx+x-1+1x+1-1
Step 1.3.5.2
Move -1 to the left of x3.
1y2+1dydx=x4-1x3+x2x+x2-1+xx+x-1+1x+1-1
Step 1.3.5.3
Rewrite -1x3 as -x3.
1y2+1dydx=x4-x3+x2x+x2-1+xx+x-1+1x+1-1
Step 1.3.5.4
Multiply x2 by x by adding the exponents.
Tap for more steps...
Step 1.3.5.4.1
Multiply x2 by x.
Tap for more steps...
Step 1.3.5.4.1.1
Raise x to the power of 1.
1y2+1dydx=x4-x3+x2x1+x2-1+xx+x-1+1x+1-1
Step 1.3.5.4.1.2
Use the power rule aman=am+n to combine exponents.
1y2+1dydx=x4-x3+x2+1+x2-1+xx+x-1+1x+1-1
1y2+1dydx=x4-x3+x2+1+x2-1+xx+x-1+1x+1-1
Step 1.3.5.4.2
Add 2 and 1.
1y2+1dydx=x4-x3+x3+x2-1+xx+x-1+1x+1-1
1y2+1dydx=x4-x3+x3+x2-1+xx+x-1+1x+1-1
Step 1.3.5.5
Move -1 to the left of x2.
1y2+1dydx=x4-x3+x3-1x2+xx+x-1+1x+1-1
Step 1.3.5.6
Rewrite -1x2 as -x2.
1y2+1dydx=x4-x3+x3-x2+xx+x-1+1x+1-1
Step 1.3.5.7
Multiply x by x.
1y2+1dydx=x4-x3+x3-x2+x2+x-1+1x+1-1
Step 1.3.5.8
Move -1 to the left of x.
1y2+1dydx=x4-x3+x3-x2+x2-1x+1x+1-1
Step 1.3.5.9
Rewrite -1x as -x.
1y2+1dydx=x4-x3+x3-x2+x2-x+1x+1-1
Step 1.3.5.10
Multiply x by 1.
1y2+1dydx=x4-x3+x3-x2+x2-x+x+1-1
Step 1.3.5.11
Multiply -1 by 1.
1y2+1dydx=x4-x3+x3-x2+x2-x+x-1
1y2+1dydx=x4-x3+x3-x2+x2-x+x-1
Step 1.3.6
Combine the opposite terms in x4-x3+x3-x2+x2-x+x-1.
Tap for more steps...
Step 1.3.6.1
Add -x3 and x3.
1y2+1dydx=x4+0-x2+x2-x+x-1
Step 1.3.6.2
Add x4 and 0.
1y2+1dydx=x4-x2+x2-x+x-1
Step 1.3.6.3
Add -x2 and x2.
1y2+1dydx=x4+0-x+x-1
Step 1.3.6.4
Add x4 and 0.
1y2+1dydx=x4-x+x-1
Step 1.3.6.5
Add -x and x.
1y2+1dydx=x4+0-1
Step 1.3.6.6
Add x4 and 0.
1y2+1dydx=x4-1
1y2+1dydx=x4-1
1y2+1dydx=x4-1
Step 1.4
Rewrite the equation.
1y2+1dy=(x4-1)dx
1y2+1dy=(x4-1)dx
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
1y2+1dy=x4-1dx
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Simplify the expression.
Tap for more steps...
Step 2.2.1.1
Reorder y2 and 1.
11+y2dy=x4-1dx
Step 2.2.1.2
Rewrite 1 as 12.
112+y2dy=x4-1dx
112+y2dy=x4-1dx
Step 2.2.2
The integral of 112+y2 with respect to y is arctan(y)+C1.
arctan(y)+C1=x4-1dx
arctan(y)+C1=x4-1dx
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Split the single integral into multiple integrals.
arctan(y)+C1=x4dx+-1dx
Step 2.3.2
By the Power Rule, the integral of x4 with respect to x is 15x5.
arctan(y)+C1=15x5+C2+-1dx
Step 2.3.3
Apply the constant rule.
arctan(y)+C1=15x5+C2-x+C3
Step 2.3.4
Simplify.
arctan(y)+C1=15x5-x+C4
arctan(y)+C1=15x5-x+C4
Step 2.4
Group the constant of integration on the right side as K.
arctan(y)=15x5-x+K
arctan(y)=15x5-x+K
Step 3
Solve for y.
Tap for more steps...
Step 3.1
Take the inverse arctangent of both sides of the equation to extract y from inside the arctangent.
y=tan(15x5-x+K)
Step 3.2
Simplify the right side.
Tap for more steps...
Step 3.2.1
Combine 15 and x5.
y=tan(x55-x+K)
y=tan(x55-x+K)
y=tan(x55-x+K)
 [x2  12  π  xdx ]