Enter a problem...
Calculus Examples
Step 1
Assume all solutions are of the form .
Step 2
Step 2.1
Find the first derivative.
Step 2.2
Find the second derivative.
Step 2.3
Substitute into the differential equation.
Step 2.4
Remove parentheses.
Step 2.5
Factor out .
Step 2.5.1
Factor out of .
Step 2.5.2
Factor out of .
Step 2.5.3
Factor out of .
Step 2.5.4
Factor out of .
Step 2.5.5
Factor out of .
Step 2.6
Since exponentials can never be zero, divide both sides by .
Step 3
Step 3.1
Move all terms to the left side of the equation and simplify.
Step 3.1.1
Move all the expressions to the left side of the equation.
Step 3.1.1.1
Subtract from both sides of the equation.
Step 3.1.1.2
Subtract from both sides of the equation.
Step 3.1.2
Subtract from .
Step 3.2
Use the quadratic formula to find the solutions.
Step 3.3
Substitute the values , , and into the quadratic formula and solve for .
Step 3.4
Simplify.
Step 3.4.1
Simplify the numerator.
Step 3.4.1.1
Raise to the power of .
Step 3.4.1.2
Multiply by .
Step 3.4.1.3
Apply the distributive property.
Step 3.4.1.4
Multiply by .
Step 3.4.1.5
Multiply by .
Step 3.4.1.6
Add and .
Step 3.4.1.7
Factor out of .
Step 3.4.1.7.1
Factor out of .
Step 3.4.1.7.2
Factor out of .
Step 3.4.1.7.3
Factor out of .
Step 3.4.1.8
Rewrite as .
Step 3.4.1.8.1
Factor out of .
Step 3.4.1.8.2
Rewrite as .
Step 3.4.1.8.3
Add parentheses.
Step 3.4.1.9
Pull terms out from under the radical.
Step 3.4.2
Multiply by .
Step 3.4.3
Simplify .
Step 3.5
Simplify the expression to solve for the portion of the .
Step 3.5.1
Simplify the numerator.
Step 3.5.1.1
Raise to the power of .
Step 3.5.1.2
Multiply by .
Step 3.5.1.3
Apply the distributive property.
Step 3.5.1.4
Multiply by .
Step 3.5.1.5
Multiply by .
Step 3.5.1.6
Add and .
Step 3.5.1.7
Factor out of .
Step 3.5.1.7.1
Factor out of .
Step 3.5.1.7.2
Factor out of .
Step 3.5.1.7.3
Factor out of .
Step 3.5.1.8
Rewrite as .
Step 3.5.1.8.1
Factor out of .
Step 3.5.1.8.2
Rewrite as .
Step 3.5.1.8.3
Add parentheses.
Step 3.5.1.9
Pull terms out from under the radical.
Step 3.5.2
Multiply by .
Step 3.5.3
Simplify .
Step 3.5.4
Change the to .
Step 3.6
Simplify the expression to solve for the portion of the .
Step 3.6.1
Simplify the numerator.
Step 3.6.1.1
Raise to the power of .
Step 3.6.1.2
Multiply by .
Step 3.6.1.3
Apply the distributive property.
Step 3.6.1.4
Multiply by .
Step 3.6.1.5
Multiply by .
Step 3.6.1.6
Add and .
Step 3.6.1.7
Factor out of .
Step 3.6.1.7.1
Factor out of .
Step 3.6.1.7.2
Factor out of .
Step 3.6.1.7.3
Factor out of .
Step 3.6.1.8
Rewrite as .
Step 3.6.1.8.1
Factor out of .
Step 3.6.1.8.2
Rewrite as .
Step 3.6.1.8.3
Add parentheses.
Step 3.6.1.9
Pull terms out from under the radical.
Step 3.6.2
Multiply by .
Step 3.6.3
Simplify .
Step 3.6.4
Change the to .
Step 3.7
The final answer is the combination of both solutions.
Step 4
With the two found values of , two solutions can be constructed.
Step 5
By the principle of superposition, the general solution is a linear combination of the two solutions for a second order homogeneous linear differential equation.
Step 6
Step 6.1
Apply the distributive property.
Step 6.2
Apply the distributive property.