Calculus Examples

Solve the Differential Equation (dy)/(dx)=( natural log of x)/(xy) , y(1)=2
,
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Regroup factors.
Step 1.2
Multiply both sides by .
Step 1.3
Simplify.
Tap for more steps...
Step 1.3.1
Multiply by .
Step 1.3.2
Cancel the common factor of .
Tap for more steps...
Step 1.3.2.1
Factor out of .
Step 1.3.2.2
Cancel the common factor.
Step 1.3.2.3
Rewrite the expression.
Step 1.4
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.3.1.1
Let . Find .
Tap for more steps...
Step 2.3.1.1.1
Differentiate .
Step 2.3.1.1.2
The derivative of with respect to is .
Step 2.3.1.2
Rewrite the problem using and .
Step 2.3.2
By the Power Rule, the integral of with respect to is .
Step 2.3.3
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify .
Tap for more steps...
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1
Combine and .
Step 3.2.2.1.2
Apply the distributive property.
Step 3.2.2.1.3
Cancel the common factor of .
Tap for more steps...
Step 3.2.2.1.3.1
Cancel the common factor.
Step 3.2.2.1.3.2
Rewrite the expression.
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
The complete solution is the result of both the positive and negative portions of the solution.
Tap for more steps...
Step 3.4.1
First, use the positive value of the to find the first solution.
Step 3.4.2
Next, use the negative value of the to find the second solution.
Step 3.4.3
The complete solution is the result of both the positive and negative portions of the solution.
Step 4
Simplify the constant of integration.
Step 5
Since is positive in the initial condition , only consider to find the . Substitute for and for .
Step 6
Solve for .
Tap for more steps...
Step 6.1
Rewrite the equation as .
Step 6.2
To remove the radical on the left side of the equation, square both sides of the equation.
Step 6.3
Simplify each side of the equation.
Tap for more steps...
Step 6.3.1
Use to rewrite as .
Step 6.3.2
Simplify the left side.
Tap for more steps...
Step 6.3.2.1
Simplify .
Tap for more steps...
Step 6.3.2.1.1
Multiply the exponents in .
Tap for more steps...
Step 6.3.2.1.1.1
Apply the power rule and multiply exponents, .
Step 6.3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 6.3.2.1.1.2.1
Cancel the common factor.
Step 6.3.2.1.1.2.2
Rewrite the expression.
Step 6.3.2.1.2
Simplify each term.
Tap for more steps...
Step 6.3.2.1.2.1
The natural logarithm of is .
Step 6.3.2.1.2.2
Raising to any positive power yields .
Step 6.3.2.1.3
Simplify by adding zeros.
Tap for more steps...
Step 6.3.2.1.3.1
Add and .
Step 6.3.2.1.3.2
Simplify.
Step 6.3.3
Simplify the right side.
Tap for more steps...
Step 6.3.3.1
Raise to the power of .
Step 7
Substitute for in and simplify.
Tap for more steps...
Step 7.1
Substitute for .