Enter a problem...
Calculus Examples
Step 1
Step 1.1
Solve for .
Step 1.1.1
Combine and .
Step 1.1.2
Multiply both sides by .
Step 1.1.3
Simplify.
Step 1.1.3.1
Simplify the left side.
Step 1.1.3.1.1
Cancel the common factor of .
Step 1.1.3.1.1.1
Cancel the common factor.
Step 1.1.3.1.1.2
Rewrite the expression.
Step 1.1.3.2
Simplify the right side.
Step 1.1.3.2.1
Simplify .
Step 1.1.3.2.1.1
Apply the distributive property.
Step 1.1.3.2.1.2
Simplify the expression.
Step 1.1.3.2.1.2.1
Multiply by .
Step 1.1.3.2.1.2.2
Reorder and .
Step 1.1.4
Divide each term in by and simplify.
Step 1.1.4.1
Divide each term in by .
Step 1.1.4.2
Simplify the left side.
Step 1.1.4.2.1
Cancel the common factor of .
Step 1.1.4.2.1.1
Cancel the common factor.
Step 1.1.4.2.1.2
Divide by .
Step 1.1.4.3
Simplify the right side.
Step 1.1.4.3.1
Simplify terms.
Step 1.1.4.3.1.1
Simplify each term.
Step 1.1.4.3.1.1.1
Move the negative in front of the fraction.
Step 1.1.4.3.1.1.2
Multiply by .
Step 1.1.4.3.1.1.3
Combine and simplify the denominator.
Step 1.1.4.3.1.1.3.1
Multiply by .
Step 1.1.4.3.1.1.3.2
Raise to the power of .
Step 1.1.4.3.1.1.3.3
Raise to the power of .
Step 1.1.4.3.1.1.3.4
Use the power rule to combine exponents.
Step 1.1.4.3.1.1.3.5
Add and .
Step 1.1.4.3.1.1.3.6
Rewrite as .
Step 1.1.4.3.1.1.3.6.1
Use to rewrite as .
Step 1.1.4.3.1.1.3.6.2
Apply the power rule and multiply exponents, .
Step 1.1.4.3.1.1.3.6.3
Combine and .
Step 1.1.4.3.1.1.3.6.4
Cancel the common factor of .
Step 1.1.4.3.1.1.3.6.4.1
Cancel the common factor.
Step 1.1.4.3.1.1.3.6.4.2
Rewrite the expression.
Step 1.1.4.3.1.1.3.6.5
Simplify.
Step 1.1.4.3.1.1.4
Move the negative in front of the fraction.
Step 1.1.4.3.1.1.5
Multiply by .
Step 1.1.4.3.1.1.6
Combine and simplify the denominator.
Step 1.1.4.3.1.1.6.1
Multiply by .
Step 1.1.4.3.1.1.6.2
Raise to the power of .
Step 1.1.4.3.1.1.6.3
Raise to the power of .
Step 1.1.4.3.1.1.6.4
Use the power rule to combine exponents.
Step 1.1.4.3.1.1.6.5
Add and .
Step 1.1.4.3.1.1.6.6
Rewrite as .
Step 1.1.4.3.1.1.6.6.1
Use to rewrite as .
Step 1.1.4.3.1.1.6.6.2
Apply the power rule and multiply exponents, .
Step 1.1.4.3.1.1.6.6.3
Combine and .
Step 1.1.4.3.1.1.6.6.4
Cancel the common factor of .
Step 1.1.4.3.1.1.6.6.4.1
Cancel the common factor.
Step 1.1.4.3.1.1.6.6.4.2
Rewrite the expression.
Step 1.1.4.3.1.1.6.6.5
Simplify.
Step 1.1.4.3.1.2
Combine the numerators over the common denominator.
Step 1.1.4.3.2
Simplify the numerator.
Step 1.1.4.3.2.1
Factor out of .
Step 1.1.4.3.2.1.1
Factor out of .
Step 1.1.4.3.2.1.2
Factor out of .
Step 1.1.4.3.2.1.3
Factor out of .
Step 1.1.4.3.2.2
Rewrite as .
Step 1.1.4.3.3
Simplify with factoring out.
Step 1.1.4.3.3.1
Factor out of .
Step 1.1.4.3.3.2
Rewrite as .
Step 1.1.4.3.3.3
Factor out of .
Step 1.1.4.3.3.4
Simplify the expression.
Step 1.1.4.3.3.4.1
Rewrite as .
Step 1.1.4.3.3.4.2
Move the negative in front of the fraction.
Step 1.2
Regroup factors.
Step 1.3
Multiply both sides by .
Step 1.4
Simplify.
Step 1.4.1
Rewrite using the commutative property of multiplication.
Step 1.4.2
Cancel the common factor of .
Step 1.4.2.1
Move the leading negative in into the numerator.
Step 1.4.2.2
Factor out of .
Step 1.4.2.3
Cancel the common factor.
Step 1.4.2.4
Rewrite the expression.
Step 1.5
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Let . Then . Rewrite using and .
Step 2.2.1.1
Let . Find .
Step 2.2.1.1.1
Differentiate .
Step 2.2.1.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.2.1.1.3
Differentiate using the Power Rule which states that is where .
Step 2.2.1.1.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.1.1.5
Add and .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
The integral of with respect to is .
Step 2.2.3
Replace all occurrences of with .
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
Multiply by .
Step 2.3.4
Let . Then , so . Rewrite using and .
Step 2.3.4.1
Let . Find .
Step 2.3.4.1.1
Differentiate .
Step 2.3.4.1.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3.4.1.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.4.1.4
Differentiate using the Power Rule which states that is where .
Step 2.3.4.1.5
Add and .
Step 2.3.4.2
Rewrite the problem using and .
Step 2.3.5
Simplify.
Step 2.3.5.1
Multiply by .
Step 2.3.5.2
Move to the left of .
Step 2.3.6
Since is constant with respect to , move out of the integral.
Step 2.3.7
Simplify the expression.
Step 2.3.7.1
Simplify.
Step 2.3.7.1.1
Combine and .
Step 2.3.7.1.2
Cancel the common factor of and .
Step 2.3.7.1.2.1
Factor out of .
Step 2.3.7.1.2.2
Cancel the common factors.
Step 2.3.7.1.2.2.1
Factor out of .
Step 2.3.7.1.2.2.2
Cancel the common factor.
Step 2.3.7.1.2.2.3
Rewrite the expression.
Step 2.3.7.1.2.2.4
Divide by .
Step 2.3.7.2
Use to rewrite as .
Step 2.3.7.3
Simplify.
Step 2.3.7.3.1
Move to the denominator using the negative exponent rule .
Step 2.3.7.3.2
Multiply by by adding the exponents.
Step 2.3.7.3.2.1
Multiply by .
Step 2.3.7.3.2.1.1
Raise to the power of .
Step 2.3.7.3.2.1.2
Use the power rule to combine exponents.
Step 2.3.7.3.2.2
Write as a fraction with a common denominator.
Step 2.3.7.3.2.3
Combine the numerators over the common denominator.
Step 2.3.7.3.2.4
Subtract from .
Step 2.3.7.4
Apply basic rules of exponents.
Step 2.3.7.4.1
Move out of the denominator by raising it to the power.
Step 2.3.7.4.2
Multiply the exponents in .
Step 2.3.7.4.2.1
Apply the power rule and multiply exponents, .
Step 2.3.7.4.2.2
Combine and .
Step 2.3.7.4.2.3
Move the negative in front of the fraction.
Step 2.3.8
By the Power Rule, the integral of with respect to is .
Step 2.3.9
Simplify.
Step 2.3.9.1
Rewrite as .
Step 2.3.9.2
Multiply by .
Step 2.3.10
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
To solve for , rewrite the equation using properties of logarithms.
Step 3.2
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.3
Solve for .
Step 3.3.1
Rewrite the equation as .
Step 3.3.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3.3.3
Subtract from both sides of the equation.
Step 4
Step 4.1
Rewrite as .
Step 4.2
Reorder and .
Step 4.3
Combine constants with the plus or minus.