Calculus Examples

Solve the Differential Equation (dy)/(dx)=(8e^(4x))/(2cos(2y))
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Cancel the common factor of .
Tap for more steps...
Step 1.2.1.1
Factor out of .
Step 1.2.1.2
Cancel the common factor.
Step 1.2.1.3
Rewrite the expression.
Step 1.2.2
Cancel the common factor of and .
Tap for more steps...
Step 1.2.2.1
Factor out of .
Step 1.2.2.2
Cancel the common factors.
Tap for more steps...
Step 1.2.2.2.1
Factor out of .
Step 1.2.2.2.2
Cancel the common factor.
Step 1.2.2.2.3
Rewrite the expression.
Step 1.2.2.2.4
Divide by .
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.2.1.1
Let . Find .
Tap for more steps...
Step 2.2.1.1.1
Differentiate .
Step 2.2.1.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.2.1.1.3
Differentiate using the Power Rule which states that is where .
Step 2.2.1.1.4
Multiply by .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
Combine and .
Step 2.2.3
Since is constant with respect to , move out of the integral.
Step 2.2.4
The integral of with respect to is .
Step 2.2.5
Simplify.
Step 2.2.6
Replace all occurrences of with .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 2.3.2.1
Let . Find .
Tap for more steps...
Step 2.3.2.1.1
Differentiate .
Step 2.3.2.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3.2.1.3
Differentiate using the Power Rule which states that is where .
Step 2.3.2.1.4
Multiply by .
Step 2.3.2.2
Rewrite the problem using and .
Step 2.3.3
Combine and .
Step 2.3.4
Since is constant with respect to , move out of the integral.
Step 2.3.5
Simplify.
Tap for more steps...
Step 2.3.5.1
Combine and .
Step 2.3.5.2
Cancel the common factor of .
Tap for more steps...
Step 2.3.5.2.1
Cancel the common factor.
Step 2.3.5.2.2
Rewrite the expression.
Step 2.3.5.3
Multiply by .
Step 2.3.6
The integral of with respect to is .
Step 2.3.7
Replace all occurrences of with .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify .
Tap for more steps...
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Apply the distributive property.
Step 3.3
Reorder and .
Step 3.4
Take the inverse sine of both sides of the equation to extract from inside the sine.
Step 3.5
Divide each term in by and simplify.
Tap for more steps...
Step 3.5.1
Divide each term in by .
Step 3.5.2
Simplify the left side.
Tap for more steps...
Step 3.5.2.1
Cancel the common factor of .
Tap for more steps...
Step 3.5.2.1.1
Cancel the common factor.
Step 3.5.2.1.2
Divide by .
Step 4
Simplify the constant of integration.