Enter a problem...
Calculus Examples
Step 1
Step 1.1
Regroup factors.
Step 1.2
Multiply both sides by .
Step 1.3
Simplify.
Step 1.3.1
Combine.
Step 1.3.2
Cancel the common factor of .
Step 1.3.2.1
Factor out of .
Step 1.3.2.2
Cancel the common factor.
Step 1.3.2.3
Rewrite the expression.
Step 1.3.3
Multiply by .
Step 1.4
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Apply basic rules of exponents.
Step 2.3.2.1
Move out of the denominator by raising it to the power.
Step 2.3.2.2
Multiply the exponents in .
Step 2.3.2.2.1
Apply the power rule and multiply exponents, .
Step 2.3.2.2.2
Multiply by .
Step 2.3.3
By the Power Rule, the integral of with respect to is .
Step 2.3.4
Simplify the answer.
Step 2.3.4.1
Rewrite as .
Step 2.3.4.2
Multiply by .
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Step 3.2.1
Simplify the left side.
Step 3.2.1.1
Simplify .
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Step 3.2.2.1
Simplify .
Step 3.2.2.1.1
Apply the distributive property.
Step 3.2.2.1.2
Cancel the common factor of .
Step 3.2.2.1.2.1
Move the leading negative in into the numerator.
Step 3.2.2.1.2.2
Factor out of .
Step 3.2.2.1.2.3
Cancel the common factor.
Step 3.2.2.1.2.4
Rewrite the expression.
Step 3.2.2.1.3
Move the negative in front of the fraction.
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Step 3.4.1
To write as a fraction with a common denominator, multiply by .
Step 3.4.2
Combine the numerators over the common denominator.
Step 3.4.3
Rewrite as .
Step 3.4.4
Multiply by .
Step 3.4.5
Combine and simplify the denominator.
Step 3.4.5.1
Multiply by .
Step 3.4.5.2
Raise to the power of .
Step 3.4.5.3
Use the power rule to combine exponents.
Step 3.4.5.4
Add and .
Step 3.4.5.5
Rewrite as .
Step 3.4.5.5.1
Use to rewrite as .
Step 3.4.5.5.2
Apply the power rule and multiply exponents, .
Step 3.4.5.5.3
Combine and .
Step 3.4.5.5.4
Cancel the common factor of .
Step 3.4.5.5.4.1
Cancel the common factor.
Step 3.4.5.5.4.2
Rewrite the expression.
Step 3.4.5.5.5
Simplify.
Step 3.4.6
Rewrite as .
Step 3.4.7
Combine using the product rule for radicals.
Step 3.4.8
Reorder factors in .
Step 4
Simplify the constant of integration.