Calculus Examples

Solve the Differential Equation (dy)/(dx)=-1/4e^xy^-2
Step 1
Separate the variables.
Tap for more steps...
Step 1.1
Multiply both sides by .
Step 1.2
Simplify.
Tap for more steps...
Step 1.2.1
Rewrite using the commutative property of multiplication.
Step 1.2.2
Move to the numerator using the negative exponent rule .
Step 1.2.3
Multiply by by adding the exponents.
Tap for more steps...
Step 1.2.3.1
Move .
Step 1.2.3.2
Use the power rule to combine exponents.
Step 1.2.3.3
Add and .
Step 1.2.4
Simplify .
Step 1.2.5
Combine and .
Step 1.3
Rewrite the equation.
Step 2
Integrate both sides.
Tap for more steps...
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Tap for more steps...
Step 2.2.1
Move to the numerator using the negative exponent rule .
Step 2.2.2
By the Power Rule, the integral of with respect to is .
Step 2.3
Integrate the right side.
Tap for more steps...
Step 2.3.1
Since is constant with respect to , move out of the integral.
Step 2.3.2
Since is constant with respect to , move out of the integral.
Step 2.3.3
The integral of with respect to is .
Step 2.3.4
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Solve for .
Tap for more steps...
Step 3.1
Multiply both sides of the equation by .
Step 3.2
Simplify both sides of the equation.
Tap for more steps...
Step 3.2.1
Simplify the left side.
Tap for more steps...
Step 3.2.1.1
Simplify .
Tap for more steps...
Step 3.2.1.1.1
Combine and .
Step 3.2.1.1.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1.1.2.1
Cancel the common factor.
Step 3.2.1.1.2.2
Rewrite the expression.
Step 3.2.2
Simplify the right side.
Tap for more steps...
Step 3.2.2.1
Simplify .
Tap for more steps...
Step 3.2.2.1.1
Combine and .
Step 3.2.2.1.2
Apply the distributive property.
Step 3.2.2.1.3
Multiply .
Tap for more steps...
Step 3.2.2.1.3.1
Multiply by .
Step 3.2.2.1.3.2
Combine and .
Step 3.2.2.1.4
Move the negative in front of the fraction.
Step 3.3
Take the specified root of both sides of the equation to eliminate the exponent on the left side.
Step 3.4
Simplify .
Tap for more steps...
Step 3.4.1
Factor out of .
Tap for more steps...
Step 3.4.1.1
Factor out of .
Step 3.4.1.2
Factor out of .
Step 3.4.1.3
Factor out of .
Step 3.4.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.3
Simplify terms.
Tap for more steps...
Step 3.4.3.1
Combine and .
Step 3.4.3.2
Combine the numerators over the common denominator.
Step 3.4.4
Move to the left of .
Step 3.4.5
Combine and .
Step 3.4.6
Rewrite as .
Step 3.4.7
Multiply by .
Step 3.4.8
Combine and simplify the denominator.
Tap for more steps...
Step 3.4.8.1
Multiply by .
Step 3.4.8.2
Raise to the power of .
Step 3.4.8.3
Use the power rule to combine exponents.
Step 3.4.8.4
Add and .
Step 3.4.8.5
Rewrite as .
Tap for more steps...
Step 3.4.8.5.1
Use to rewrite as .
Step 3.4.8.5.2
Apply the power rule and multiply exponents, .
Step 3.4.8.5.3
Combine and .
Step 3.4.8.5.4
Cancel the common factor of .
Tap for more steps...
Step 3.4.8.5.4.1
Cancel the common factor.
Step 3.4.8.5.4.2
Rewrite the expression.
Step 3.4.8.5.5
Evaluate the exponent.
Step 3.4.9
Simplify the numerator.
Tap for more steps...
Step 3.4.9.1
Rewrite as .
Step 3.4.9.2
Raise to the power of .
Step 3.4.9.3
Rewrite as .
Tap for more steps...
Step 3.4.9.3.1
Factor out of .
Step 3.4.9.3.2
Rewrite as .
Step 3.4.9.4
Pull terms out from under the radical.
Step 3.4.9.5
Combine exponents.
Tap for more steps...
Step 3.4.9.5.1
Combine using the product rule for radicals.
Step 3.4.9.5.2
Multiply by .
Step 3.4.10
Cancel the common factors.
Tap for more steps...
Step 3.4.10.1
Factor out of .
Step 3.4.10.2
Cancel the common factor.
Step 3.4.10.3
Rewrite the expression.
Step 4
Simplify the constant of integration.