Enter a problem...
Calculus Examples
Step 1
Step 1.1
Subtract from both sides of the equation.
Step 1.2
Factor.
Step 1.2.1
Reorder terms.
Step 1.2.2
Factor out the greatest common factor from each group.
Step 1.2.2.1
Group the first two terms and the last two terms.
Step 1.2.2.2
Factor out the greatest common factor (GCF) from each group.
Step 1.2.3
Factor the polynomial by factoring out the greatest common factor, .
Step 1.2.4
Rewrite as .
Step 1.3
Multiply both sides by .
Step 1.4
Cancel the common factor of .
Step 1.4.1
Cancel the common factor.
Step 1.4.2
Rewrite the expression.
Step 1.5
Rewrite the equation.
Step 2
Step 2.1
Set up an integral on each side.
Step 2.2
Integrate the left side.
Step 2.2.1
Let . Then , so . Rewrite using and .
Step 2.2.1.1
Let . Find .
Step 2.2.1.1.1
Rewrite.
Step 2.2.1.1.2
Divide by .
Step 2.2.1.2
Rewrite the problem using and .
Step 2.2.2
Split the fraction into multiple fractions.
Step 2.2.3
Since is constant with respect to , move out of the integral.
Step 2.2.4
The integral of with respect to is .
Step 2.2.5
Simplify.
Step 2.2.6
Replace all occurrences of with .
Step 2.3
Integrate the right side.
Step 2.3.1
Split the single integral into multiple integrals.
Step 2.3.2
By the Power Rule, the integral of with respect to is .
Step 2.3.3
Apply the constant rule.
Step 2.3.4
Simplify.
Step 2.4
Group the constant of integration on the right side as .
Step 3
Step 3.1
Divide each term in by and simplify.
Step 3.1.1
Divide each term in by .
Step 3.1.2
Simplify the left side.
Step 3.1.2.1
Dividing two negative values results in a positive value.
Step 3.1.2.2
Divide by .
Step 3.1.3
Simplify the right side.
Step 3.1.3.1
Simplify each term.
Step 3.1.3.1.1
Move the negative one from the denominator of .
Step 3.1.3.1.2
Rewrite as .
Step 3.1.3.1.3
Combine and .
Step 3.1.3.1.4
Move the negative one from the denominator of .
Step 3.1.3.1.5
Rewrite as .
Step 3.1.3.1.6
Multiply by .
Step 3.1.3.1.7
Move the negative one from the denominator of .
Step 3.1.3.1.8
Rewrite as .
Step 3.2
To solve for , rewrite the equation using properties of logarithms.
Step 3.3
Rewrite in exponential form using the definition of a logarithm. If and are positive real numbers and , then is equivalent to .
Step 3.4
Solve for .
Step 3.4.1
Rewrite the equation as .
Step 3.4.2
Remove the absolute value term. This creates a on the right side of the equation because .
Step 3.4.3
Subtract from both sides of the equation.
Step 3.4.4
Divide each term in by and simplify.
Step 3.4.4.1
Divide each term in by .
Step 3.4.4.2
Simplify the left side.
Step 3.4.4.2.1
Dividing two negative values results in a positive value.
Step 3.4.4.2.2
Divide by .
Step 3.4.4.3
Simplify the right side.
Step 3.4.4.3.1
To write as a fraction with a common denominator, multiply by .
Step 3.4.4.3.2
To write as a fraction with a common denominator, multiply by .
Step 3.4.4.3.3
Write each expression with a common denominator of , by multiplying each by an appropriate factor of .
Step 3.4.4.3.3.1
Multiply by .
Step 3.4.4.3.3.2
Multiply by .
Step 3.4.4.3.3.3
Multiply by .
Step 3.4.4.3.3.4
Multiply by .
Step 3.4.4.3.4
Combine the numerators over the common denominator.
Step 3.4.4.3.5
Simplify each term.
Step 3.4.4.3.5.1
Move to the left of .
Step 3.4.4.3.5.2
Rewrite as .
Step 3.4.4.3.5.3
Multiply by .
Step 3.4.4.3.6
Divide by .
Step 4
Step 4.1
Simplify the constant of integration.
Step 4.2
Rewrite as .
Step 4.3
Reorder and .
Step 4.4
Combine constants with the plus or minus.