Calculus Examples

Solve the Differential Equation (x+ye^(y/x))dx-xe^(y/x)dy=0
Step 1
Find where .
Tap for more steps...
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate.
Tap for more steps...
Step 1.2.1
By the Sum Rule, the derivative of with respect to is .
Step 1.2.2
Since is constant with respect to , the derivative of with respect to is .
Step 1.3
Evaluate .
Tap for more steps...
Step 1.3.1
Differentiate using the Product Rule which states that is where and .
Step 1.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 1.3.2.1
To apply the Chain Rule, set as .
Step 1.3.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 1.3.2.3
Replace all occurrences of with .
Step 1.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 1.3.4
Differentiate using the Power Rule which states that is where .
Step 1.3.5
Differentiate using the Power Rule which states that is where .
Step 1.3.6
Multiply by .
Step 1.3.7
Combine and .
Step 1.3.8
Combine and .
Step 1.3.9
Multiply by .
Step 1.4
Add and .
Step 2
Find where .
Tap for more steps...
Step 2.1
Differentiate with respect to .
Step 2.2
Since is constant with respect to , the derivative of with respect to is .
Step 2.3
Differentiate using the Product Rule which states that is where and .
Step 2.4
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 2.4.1
To apply the Chain Rule, set as .
Step 2.4.2
Differentiate using the Exponential Rule which states that is where =.
Step 2.4.3
Replace all occurrences of with .
Step 2.5
Differentiate.
Tap for more steps...
Step 2.5.1
Since is constant with respect to , the derivative of with respect to is .
Step 2.5.2
Rewrite as .
Step 2.5.3
Differentiate using the Power Rule which states that is where .
Step 2.6
Raise to the power of .
Step 2.7
Use the power rule to combine exponents.
Step 2.8
Simplify the expression.
Tap for more steps...
Step 2.8.1
Add and .
Step 2.8.2
Move to the left of .
Step 2.8.3
Rewrite as .
Step 2.9
Differentiate using the Power Rule which states that is where .
Step 2.10
Multiply by .
Step 2.11
Simplify.
Tap for more steps...
Step 2.11.1
Rewrite the expression using the negative exponent rule .
Step 2.11.2
Apply the distributive property.
Step 2.11.3
Combine terms.
Tap for more steps...
Step 2.11.3.1
Combine and .
Step 2.11.3.2
Combine and .
Step 2.11.3.3
Multiply by .
Step 2.11.3.4
Multiply by .
Step 2.11.4
Reorder factors in .
Step 3
Check that .
Tap for more steps...
Step 3.1
Substitute for and for .
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
is not an identity.
is not an identity.
Step 4
Find the integration factor .
Tap for more steps...
Step 4.1
Substitute for .
Step 4.2
Substitute for .
Step 4.3
Substitute for .
Tap for more steps...
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify the numerator.
Tap for more steps...
Step 4.3.2.1
Apply the distributive property.
Step 4.3.2.2
Multiply .
Tap for more steps...
Step 4.3.2.2.1
Multiply by .
Step 4.3.2.2.2
Multiply by .
Step 4.3.2.3
Subtract from .
Step 4.3.2.4
Add and .
Step 4.3.2.5
Add and .
Step 4.3.3
Cancel the common factor of .
Tap for more steps...
Step 4.3.3.1
Cancel the common factor.
Step 4.3.3.2
Rewrite the expression.
Step 4.3.4
Move the negative in front of the fraction.
Step 4.4
Find the integration factor .
Step 5
Evaluate the integral .
Tap for more steps...
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Since is constant with respect to , move out of the integral.
Step 5.3
Multiply by .
Step 5.4
The integral of with respect to is .
Step 5.5
Simplify.
Step 5.6
Simplify each term.
Tap for more steps...
Step 5.6.1
Simplify by moving inside the logarithm.
Step 5.6.2
Exponentiation and log are inverse functions.
Step 5.6.3
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.6.4
Rewrite the expression using the negative exponent rule .
Step 6
Multiply both sides of by the integration factor .
Tap for more steps...
Step 6.1
Multiply by .
Step 6.2
Multiply by .
Step 6.3
Multiply by .
Step 6.4
Cancel the common factor of .
Tap for more steps...
Step 6.4.1
Factor out of .
Step 6.4.2
Factor out of .
Step 6.4.3
Cancel the common factor.
Step 6.4.4
Rewrite the expression.
Step 6.5
Combine and .
Step 6.6
Rewrite as .
Step 7
Set equal to the integral of .
Step 8
Integrate to find .
Tap for more steps...
Step 8.1
Since is constant with respect to , move out of the integral.
Step 8.2
Since is constant with respect to , move out of the integral.
Step 8.3
Remove parentheses.
Step 8.4
Let . Then , so . Rewrite using and .
Tap for more steps...
Step 8.4.1
Let . Find .
Tap for more steps...
Step 8.4.1.1
Differentiate .
Step 8.4.1.2
Since is constant with respect to , the derivative of with respect to is .
Step 8.4.1.3
Differentiate using the Power Rule which states that is where .
Step 8.4.1.4
Multiply by .
Step 8.4.2
Rewrite the problem using and .
Step 8.5
Simplify.
Tap for more steps...
Step 8.5.1
Multiply by the reciprocal of the fraction to divide by .
Step 8.5.2
Multiply by .
Step 8.6
Since is constant with respect to , move out of the integral.
Step 8.7
Simplify.
Tap for more steps...
Step 8.7.1
Combine and .
Step 8.7.2
Cancel the common factor of .
Tap for more steps...
Step 8.7.2.1
Cancel the common factor.
Step 8.7.2.2
Rewrite the expression.
Step 8.7.3
Multiply by .
Step 8.8
The integral of with respect to is .
Step 8.9
Simplify.
Step 8.10
Replace all occurrences of with .
Step 9
Since the integral of will contain an integration constant, we can replace with .
Step 10
Set .
Step 11
Find .
Tap for more steps...
Step 11.1
Differentiate with respect to .
Step 11.2
By the Sum Rule, the derivative of with respect to is .
Step 11.3
Evaluate .
Tap for more steps...
Step 11.3.1
Since is constant with respect to , the derivative of with respect to is .
Step 11.3.2
Differentiate using the chain rule, which states that is where and .
Tap for more steps...
Step 11.3.2.1
To apply the Chain Rule, set as .
Step 11.3.2.2
Differentiate using the Exponential Rule which states that is where =.
Step 11.3.2.3
Replace all occurrences of with .
Step 11.3.3
Since is constant with respect to , the derivative of with respect to is .
Step 11.3.4
Rewrite as .
Step 11.3.5
Differentiate using the Power Rule which states that is where .
Step 11.3.6
Multiply by .
Step 11.3.7
Multiply by .
Step 11.4
Differentiate using the function rule which states that the derivative of is .
Step 11.5
Simplify.
Tap for more steps...
Step 11.5.1
Rewrite the expression using the negative exponent rule .
Step 11.5.2
Combine terms.
Tap for more steps...
Step 11.5.2.1
Combine and .
Step 11.5.2.2
Combine and .
Step 11.5.3
Reorder terms.
Step 11.5.4
Reorder factors in .
Step 12
Solve for .
Tap for more steps...
Step 12.1
Solve for .
Tap for more steps...
Step 12.1.1
Move all terms containing variables to the left side of the equation.
Tap for more steps...
Step 12.1.1.1
Subtract from both sides of the equation.
Step 12.1.1.2
Combine the numerators over the common denominator.
Step 12.1.1.3
Apply the distributive property.
Step 12.1.1.4
Combine the opposite terms in .
Tap for more steps...
Step 12.1.1.4.1
Subtract from .
Step 12.1.1.4.2
Add and .
Step 12.1.1.5
Simplify each term.
Tap for more steps...
Step 12.1.1.5.1
Cancel the common factor of and .
Tap for more steps...
Step 12.1.1.5.1.1
Factor out of .
Step 12.1.1.5.1.2
Cancel the common factors.
Tap for more steps...
Step 12.1.1.5.1.2.1
Factor out of .
Step 12.1.1.5.1.2.2
Cancel the common factor.
Step 12.1.1.5.1.2.3
Rewrite the expression.
Step 12.1.1.5.2
Move the negative in front of the fraction.
Step 12.1.2
Add to both sides of the equation.
Step 13
Find the antiderivative of to find .
Tap for more steps...
Step 13.1
Integrate both sides of .
Step 13.2
Evaluate .
Step 13.3
The integral of with respect to is .
Step 14
Substitute for in .