Calculus Examples

Solve the Differential Equation y^2dt+(2yt+1)dy=0
Step 1
Find where .
Tap for more steps...
Step 1.1
Differentiate with respect to .
Step 1.2
Differentiate using the Power Rule which states that is where .
Step 2
Find where .
Tap for more steps...
Step 2.1
Differentiate with respect to .
Step 2.2
By the Sum Rule, the derivative of with respect to is .
Step 2.3
Since is constant with respect to , the derivative of with respect to is .
Step 2.4
Since is constant with respect to , the derivative of with respect to is .
Step 2.5
Add and .
Step 3
Check that .
Tap for more steps...
Step 3.1
Substitute for and for .
Step 3.2
Since the left side does not equal the right side, the equation is not an identity.
is not an identity.
is not an identity.
Step 4
Find the integration factor .
Tap for more steps...
Step 4.1
Substitute for .
Step 4.2
Substitute for .
Step 4.3
Substitute for .
Tap for more steps...
Step 4.3.1
Substitute for .
Step 4.3.2
Simplify the numerator.
Tap for more steps...
Step 4.3.2.1
Multiply by .
Step 4.3.2.2
Subtract from .
Step 4.3.3
Cancel the common factor of and .
Tap for more steps...
Step 4.3.3.1
Factor out of .
Step 4.3.3.2
Cancel the common factors.
Tap for more steps...
Step 4.3.3.2.1
Factor out of .
Step 4.3.3.2.2
Cancel the common factor.
Step 4.3.3.2.3
Rewrite the expression.
Step 4.3.4
Substitute for .
Step 4.4
Find the integration factor .
Step 5
Evaluate the integral .
Tap for more steps...
Step 5.1
Since is constant with respect to , move out of the integral.
Step 5.2
Since is constant with respect to , move out of the integral.
Step 5.3
Multiply by .
Step 5.4
The integral of with respect to is .
Step 5.5
Simplify.
Step 5.6
Simplify each term.
Tap for more steps...
Step 5.6.1
Simplify by moving inside the logarithm.
Step 5.6.2
Exponentiation and log are inverse functions.
Step 5.6.3
Remove the absolute value in because exponentiations with even powers are always positive.
Step 5.6.4
Rewrite the expression using the negative exponent rule .
Step 6
Multiply both sides of by the integration factor .
Tap for more steps...
Step 6.1
Multiply by .
Step 6.2
Cancel the common factor of .
Tap for more steps...
Step 6.2.1
Cancel the common factor.
Step 6.2.2
Rewrite the expression.
Step 6.3
Multiply by .
Step 6.4
Multiply by .
Step 7
Set equal to the integral of .
Step 8
Integrate to find .
Tap for more steps...
Step 8.1
Apply the constant rule.
Step 9
Since the integral of will contain an integration constant, we can replace with .
Step 10
Set .
Step 11
Find .
Tap for more steps...
Step 11.1
Differentiate with respect to .
Step 11.2
By the Sum Rule, the derivative of with respect to is .
Step 11.3
Since is constant with respect to , the derivative of with respect to is .
Step 11.4
Differentiate using the function rule which states that the derivative of is .
Step 11.5
Add and .
Step 12
Find the antiderivative of to find .
Tap for more steps...
Step 12.1
Integrate both sides of .
Step 12.2
Evaluate .
Step 12.3
Move out of the denominator by raising it to the power.
Step 12.4
Multiply the exponents in .
Tap for more steps...
Step 12.4.1
Apply the power rule and multiply exponents, .
Step 12.4.2
Multiply by .
Step 12.5
Expand .
Tap for more steps...
Step 12.5.1
Apply the distributive property.
Step 12.5.2
Multiply by .
Step 12.6
Multiply by by adding the exponents.
Tap for more steps...
Step 12.6.1
Move .
Step 12.6.2
Multiply by .
Tap for more steps...
Step 12.6.2.1
Raise to the power of .
Step 12.6.2.2
Use the power rule to combine exponents.
Step 12.6.3
Add and .
Step 12.7
Split the single integral into multiple integrals.
Step 12.8
Since is constant with respect to , move out of the integral.
Step 12.9
The integral of with respect to is .
Step 12.10
By the Power Rule, the integral of with respect to is .
Step 12.11
Simplify.
Step 13
Substitute for in .
Step 14
Simplify each term.
Tap for more steps...
Step 14.1
Simplify by moving inside the logarithm.
Step 14.2
Remove the absolute value in because exponentiations with even powers are always positive.