Calculus Examples

Solve the Differential Equation dx-x^2dy=0
Step 1
Subtract from both sides of the equation.
Step 2
Multiply both sides by .
Step 3
Simplify.
Tap for more steps...
Step 3.1
Rewrite using the commutative property of multiplication.
Step 3.2
Cancel the common factor of .
Tap for more steps...
Step 3.2.1
Move the leading negative in into the numerator.
Step 3.2.2
Cancel the common factor.
Step 3.2.3
Rewrite the expression.
Step 3.3
Combine and .
Step 3.4
Move the negative in front of the fraction.
Step 4
Integrate both sides.
Tap for more steps...
Step 4.1
Set up an integral on each side.
Step 4.2
Apply the constant rule.
Step 4.3
Integrate the right side.
Tap for more steps...
Step 4.3.1
Since is constant with respect to , move out of the integral.
Step 4.3.2
Apply basic rules of exponents.
Tap for more steps...
Step 4.3.2.1
Move out of the denominator by raising it to the power.
Step 4.3.2.2
Multiply the exponents in .
Tap for more steps...
Step 4.3.2.2.1
Apply the power rule and multiply exponents, .
Step 4.3.2.2.2
Multiply by .
Step 4.3.3
By the Power Rule, the integral of with respect to is .
Step 4.3.4
Simplify the answer.
Tap for more steps...
Step 4.3.4.1
Rewrite as .
Step 4.3.4.2
Simplify.
Tap for more steps...
Step 4.3.4.2.1
Multiply by .
Step 4.3.4.2.2
Multiply by .
Step 4.4
Group the constant of integration on the right side as .
Step 5
Divide each term in by and simplify.
Tap for more steps...
Step 5.1
Divide each term in by .
Step 5.2
Simplify the left side.
Tap for more steps...
Step 5.2.1
Dividing two negative values results in a positive value.
Step 5.2.2
Divide by .
Step 5.3
Simplify the right side.
Tap for more steps...
Step 5.3.1
Simplify each term.
Tap for more steps...
Step 5.3.1.1
Move the negative one from the denominator of .
Step 5.3.1.2
Rewrite as .
Step 5.3.1.3
Move the negative one from the denominator of .
Step 5.3.1.4
Rewrite as .
Step 6
Simplify the constant of integration.